63 research outputs found
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
New insights into the synergism of nucleoside analogs with radiotherapy
Nucleoside analogs have been frequently used in combination with radiotherapy in the clinical setting, as it has long been understood that inhibition of DNA repair pathways is an important means by which many nucleoside analogs synergize. Recent advances in our understanding of the structure and function of deoxycytidine kinase (dCK), a critical enzyme required for the anti-tumor activity for many nucleoside analogs, have clarified the mechanistic role this kinase plays in chemo- and radio-sensitization. A heretofore unrecognized role of dCK in the DNA damage response and cell cycle machinery has helped explain the synergistic effect of these agents with radiotherapy. Since most currently employed nucleoside analogs are primarily activated by dCK, these findings lend fresh impetus to efforts focused on profiling and modulating dCK expression and activity in tumors. In this review we will briefly review the pharmacology and biochemistry of the major nucleoside analogs in clinical use that are activated by dCK. This will be followed by discussions of recent advances in our understanding of dCK activation via post-translational modifications in response to radiation and current strategies aimed at enhancing this activity in cancer cells
Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease
BACKGROUND:
Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes.
METHODS:
We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization.
RESULTS:
During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events.
CONCLUSIONS:
Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)
Specific activation of microRNA106b enables the p73 apoptotic response in chronic lymphocytic leukemia by targeting the ubiquitin ligase Itch for degradation
Chronic lymphocytic leukemia (CLL) is characterized by cells that exhibit dysfunctional apoptosis. Here, we show that deacetylase inhibition led to the E2F1- and myc-mediated transcriptional activation of the microRNA miR106b in primary CLL cells. Induction of miR106b was associated with a down-regulation in the levels of the E3-ubiquitin ligase Itch. Decreases in Itch protein levels were associated with a reciprocal accumulation of its proapoptotic substrate, TAp73 (p73), and induction of p53 up-regulated modulator of apoptosis (PUMA) mRNA and protein. This event was accompanied by mitochondrial dysfunction, processing of caspase-9, and apoptosis of CLL cells. Ectopic expression of miR106b in CLL cells demonstrated that Itch was a direct target of miR106b such that miR106b-induced decreases in Itch resulted in an accumulation of p73. Thus, our results identify a novel regulatory mechanism wherein microRNA regulate cell survival by mediating the posttranscriptional down-regulation of an ubiquitin ligase, leading to the induction of a proapoptotic regulator in malignant cells. Silencing of miRNA expression in CLL may selectively suppress proapoptotic pathways, providing such tumors with a survival advantage. Consequently, chemotherapeutic drugs that activate miR106b could initiate a p53-independent mechanism that targets CLL cells
A Phase I Study of Fludarabine, Cytarabine, and Oxaliplatin Therapy in Patients With Relapsed or Refractory Acute Myeloid Leukemia
PurposeThe combination of cytarabine and fludarabine was associated with superior clinical outcomes compared with those of high-dose cytarabine in relapse acute myeloid leukemia (AML). We conducted a phase I study combining oxaliplatin with cytarabine and fludarabine therapy for patients with relapsed or refractory AML.Patients and methodsBetween January 2008 and November 2009, 27 patients were registered in the study. Patients had histologically confirmed disease, performance status 0 to 2, and adequate organ function. The treatment regimen consisted of increasing doses of oxaliplatin (25, 30, or 35 mg/m(2)/d) on days 1 to 4 (escalation phase), and fludarabine (30 mg/m²) and cytarabine (500 mg/m²) on days 2 to 6, every 28 days for ≤ 6 cycles. The dose-limiting toxicity was defined as any symptomatic grade ≥ 3 nonhematologic toxicity lasting ≥ 3 days and involving a major organ system.ResultsOf 27 patients, 12 were treated in the dose-escalation phase and 15 at the maximum tolerated dose for oxaliplatin (30 mg/m²; expansion phase). All patients were evaluable for toxicity and response. Only 1 patient received the second cycle; the remaining patients received no further study treatment, owing to slow recovery from toxicities or physician decision. Grade 3-4 drug-related toxicities included diarrhea (grade 4) and elevated levels of bilirubin (grade 3) and aspartate transaminase (grade 3). In all, 3 patients had a complete remission and 2 patients complete response without platelet recovery.ConclusionOxaliplatin, cytarabine, and fludarabine therapy had antileukemic activity in patients with poor-risk AML, but it was associated with toxicity. Different schedules and doses may be better tolerated
- …