197 research outputs found

    Mapping the Skies of Ultracool Worlds: Detecting Storms and Spots with Extremely Large Telescopes

    Full text link
    Extremely large telescopes (ELTs) present an unparalleled opportunity to study the magnetism, atmospheric dynamics, and chemistry of very low mass stars (VLMs), brown dwarfs, and exoplanets. Instruments such as the Giant Magellan Telescope - Consortium Large Earth Finder (GMT/GCLEF), the Thirty Meter Telescope's Multi-Objective Diffraction-limited High-Resolution Infrared Spectrograph (TMT/MODHIS), and the European Southern Observatory's Mid-Infrared ELT Imager and Spectrograph (ELT/METIS) provide the spectral resolution and signal-to-noise (S/N) necessary to Doppler image ultracool targets' surfaces based on temporal spectral variations due to surface inhomogeneities. Using our publicly-available code, ImberImber, developed and validated in Plummer & Wang (2022), we evaluate these instruments' abilities to discern magnetic star spots and cloud systems on a VLM star (TRAPPIST-1); two L/T transition ultracool dwarfs (VHS J1256-1257 b and SIMP J0136+0933); and three exoplanets (Beta Pic b and HR 8799 d and e). We find that TMT/MODHIS and ELT/METIS are suitable for Doppler imaging the ultracool dwarfs and Beta Pic b over a single rotation. Uncertainties for longitude and radius are typically 10\lesssim 10^{\circ}, and latitude uncertainties range from 10 to 30\sim 10^{\circ} \ \rm{to} \ 30^{\circ}. TRAPPIST-1's edge-on inclination and low υsini\upsilon \sin i provide a challenge for all three instruments while GMT/GCLEF and the HR 8799 planets may require observations over multiple rotations. We compare the spectroscopic technique, photometry-only inference, and the combination of the two. We find combining spectroscopic and photometric observations can lead to improved Bayesian inference of surface inhomogeneities and offers insight into whether ultracool atmospheres are dominated by spotted or banded features.Comment: Accepted for publication in The Astrophysical Journal, 26 pages, 10 figures, 3 table

    A Unified Spectroscopic and Photometric Model to Infer Surface Inhomogeneity: Application to Luhman 16B

    Full text link
    Extremely large telescopes (ELTs) provide an opportunity to observe surface inhomogeneities for ultracool objects including M dwarfs, brown dwarfs (BDs), and gas giant planets via Doppler imaging and spectro-photometry techniques. These inhomogeneities can be caused by star spots, clouds, and vortices. Star spots and associated stellar flares play a significant role in habitability, either stifling life or catalyzing abiogenesis depending on the emission frequency, magnitude, and orientation. Clouds and vortices may be the source of spectral and photometric variability observed at the L/T transition of BDs and are expected in gas giant exoplanets. We develop a versatile analytical framework to model and infer surface inhomogeneities which can be applied to both spectroscopic and photometric data. This model is validated against a slew of numerical simulations. Using archival spectroscopic and photometric data, we infer star spot parameters (location, size, and contrast) and generate global surface maps for Luhman 16B (an early T dwarf and one of our solar system's nearest neighbors at a distance of approximately 2 pc). We confirm previous findings that Luhman 16B's atmosphere is inhomogeneous with time-varying features. In addition, we provide tentative evidence of longer timescale atmospheric structures such as dark equatorial and bright mid-latitude to polar spots. These findings are discussed in the context of atmospheric circulation and dynamics for ultracool dwarfs. Our analytical model will be valuable in assessing the feasibility of using ELTs to study surface inhomogeneities of gas giant exoplanets and other ultracool objects.Comment: 23 pages, 10 figures, 1 table. Accepted for publication in The Astrophysical Journa

    G-Protein Inwardly Rectifying Potassium Channel 1 (GIRK1) Knockdown Decreases Beta-Adrenergic, MAP Kinase and Akt Signaling in the MDA-MB-453 Breast Cancer Cell Line

    Get PDF
    Previous data from our laboratory have indicated that there is a functional link between the beta-adrenergic receptor signaling pathway and the G-protein inwardly rectifying potassium channel (GIRK1) in breast cancer cell lines and that these pathways are involved in growth regulation of these cells. To determine functionality, MDA-MB-453 breast cancer cells were stimulated with ethanol, known to open GIRK channels. Decreased GIRK1 protein levels were seen after treatment with 0.12% ethanol. In addition, serum-free media completely inhibited GIRK1 protein expression. This data indicates that there are functional GIRK channels in breast cancer cells and that these channels are involved in cellular signaling. In the present research, to further define the signaling pathways involved, we performed RNA interference (siRNA) studies. Three stealth siRNA constructs were made starting at bases 1104, 1315, and 1490 of the GIRK1 sequence. These constructs were transfected into MDA-MB-453 cells, and both RNA and protein were isolated. GIRK1, β2-adrenergic and 18S control levels were determined using real-time PCR 24 hours after transfection. All three constructs decreased GIRK1 mRNA levels. However, β2 mRNA levels were unchanged by the GIRK1 knockdown. GIRK1 protein levels were also reduced by the knockdown, and this knockdown led to decreases in beta-adrenergic, MAP kinase and Akt signaling

    Testing fundamental physics with distant star clusters: theoretical models for pressure-supported stellar systems

    Full text link
    We investigate the mean velocity dispersion and the velocity dispersion profile of stellar systems in MOND, using the N-body code N-MODY, which is a particle-mesh based code with a numerical MOND potential solver developed by Ciotti, Londrillo and Nipoti (2006). We have calculated mean velocity dispersions for stellar systems following Plummer density distributions with masses in the range of 104M10^4 M_\odot to 109M10^9 M_\odot and which are either isolated or immersed in an external field. Our integrations reproduce previous analytic estimates for stellar velocities in systems in the deep MOND regime (ai,aea0a_i, a_e \ll a_0), where the motion of stars is either dominated by internal accelerations (aiaea_i \gg a_e) or constant external accelerations (aeaia_e \gg a_i). In addition, we derive for the first time analytic formulae for the line-of-sight velocity dispersion in the intermediate regime (aiaea0a_i \sim a_e \sim a_0). This allows for a much improved comparison of MOND with observed velocity dispersions of stellar systems. We finally derive the velocity dispersion of the globular cluster Pal 14 as one of the outer Milky Way halo globular clusters that have recently been proposed as a differentiator between Newtonian and MONDian dynamics.Comment: 11 pages, 9 figures, Accepted in MNRA

    Solid-pseudopapillary tumour of the pancreas as a rare cause of gastric outlet obstruction: a case report

    Get PDF
    The presence of a large bulky pancreatic tumour in a young female should raise suspicions of the diagnosis of solid-pseduopapillary tumour of the pancreas

    Highly phosphorescent perfect green emitting iridium(III) complex for application in OLEDs

    Get PDF
    A novel iridium complex, [bis-(2-phenylpyridine)(2-carboxy-4-dimethylaminopyridine)iridium(III)] (N984), was synthesized and characterized using spectroscopic and electrochemical methods; a solution processable OLED device incorporating the N984 complex displays electroluminescence spectra with a narrow bandwidth of 70 nm at half of its intensity, with colour coordinates of x = 0.322; y = 0.529 that are very close to those suggested by the PAL standard for a green emitter.Bolink, Henk, [email protected] ; Coronado Miralles, Eugenio, [email protected] ; Garcia Santamaria, Sonsoles Amor, [email protected]

    The theory of canonical perturbations applied to attitude dynamics and to the Earth rotation. Osculating and nonosculating Andoyer variables

    Full text link
    The Hamiltonian theory of Earth rotation, known as the Kinoshita-Souchay theory, operates with nonosculating Andoyer elements. This situation parallels a similar phenomenon that often happens (but seldom gets noticed) in orbital dynamics, when the standard Lagrange-type or Delaunay-type planetary equations unexpectedly render nonosculating orbital elements. In orbital mechanics, osculation loss happens when a velocity-dependent perturbation is plugged into the standard planetary equations. In attitude mechanics, osculation is lost when an angular-velocity-dependent disturbance is plugged in the standard dynamical equations for the Andoyer elements. We encounter exactly this situation in the theory of Earth rotation, because this theory contains an angular-velocity-dependent perturbation (the switch from an inertial frame to that associated with the precessing ecliptic of date). While the osculation loss does not influence the predictions for the figure axis of the planet, it considerably alters the predictions for the instantaneous spin-axis' orientation. We explore this issue in great detail

    Tenofovir alafenamide versus tenofovir disoproxil fumarate, coformulated with elvitegravir, cobicistat, and emtricitabine, for initial treatment of HIV-1 infection: Two randomised, double-blind, phase 3, non-inferiority trials

    Get PDF
    none27siBackground Tenofovir disoproxil fumarate can cause renal and bone toxic effects related to high plasma tenofovir concentrations. Tenofovir alafenamide is a novel tenofovir prodrug with a 90% reduction in plasma tenofovir concentrations. Tenofovir alafenamide-containing regimens can have improved renal and bone safety compared with tenofovir disoproxil fumarate-containing regimens. Methods In these two controlled, double-blind phase 3 studies, we recruited treatment-naive HIV-infected patients with an estimated creatinine clearance of 50 mL per min or higher from 178 outpatient centres in 16 countries. Patients were randomly assigned (1:1) to receive once-daily oral tablets containing 150 mg elvitegravir, 150 mg cobicistat, 200 mg emtricitabine, and 10 mg tenofovir alafenamide (E/C/F/tenofovir alafenamide) or 300 mg tenofovir disoproxil fumarate (E/C/F/tenofovir disoproxil fumarate) with matching placebo. Randomisation was done by a computer-generated allocation sequence (block size 4) and was stratified by HIV-1 RNA, CD4 count, and region (USA or ex-USA). Investigators, patients, study staff, and those assessing outcomes were masked to treatment group. All participants who received one dose of study drug were included in the primary intention-to-treat efficacy and safety analyses. The main outcomes were the proportion of patients with plasma HIV-1 RNA less than 50 copies per mL at week 48 as defined by the the US Food and Drug Adminstration (FDA) snapshot algorithm (pre-specified non-inferiority margin of 12%) and pre-specified renal and bone endpoints at 48 weeks. These studies are registered with ClinicalTrials.gov, numbers NCT01780506 and NCT01797445. Findings We recruited patients from Jan 22, 2013, to Nov 4, 2013 (2175 screened and 1744 randomly assigned), and gave treatment to 1733 patients (866 given E/C/F/tenofovir alafenamide and 867 given E/C/F/tenofovir disoproxil fumarate). E/C/F/tenofovir alafenamide was non-inferior to E/C/F/tenofovir disoproxil fumarate, with 800 (92%) of 866 patients in the tenofovir alafenamide group and 784 (90%) of 867 patients in the tenofovir disoproxil fumarate group having plasma HIV-1 RNA less than 50 copies per mL (adjusted difference 2·0%, 95% CI -0·7 to 4·7). Patients given E/C/F/tenofovir alafenamide had significantly smaller mean serum creatinine increases than those given E/C/F/tenofovir disoproxil fumarate (0·08 vs 0·12 mg/dL; p<0·0001), significantly less proteinuria (median % change -3 vs 20; p<0·0001), and a significantly smaller decrease in bone mineral density at spine (mean % change -1·30 vs -2·86; p<0·0001) and hip (-0·66 vs -2·95; p<0·0001) at 48 weeks. Interpretation Through 48 weeks, more than 90% of patients given E/C/F/tenofovir alafenamide or E/C/F/tenofovir disoproxil fumarate had virological success. Renal and bone effects were significantly reduced in patients given E/C/F/tenofovir alafenamide. Although these studies do not have the power to assess clinical safety events such as renal failure and fractures, our data suggest that E/C/F/tenofovir alafenamide will have a favourable long-term renal and bone safety profile. Funding Gilead Sciences.openSax, Paul E; Wohl, David; Yin, Michael T.; Post, Frank; Dejesus, Edwin; Saag, Michael; Pozniak, Anton; Thompson, Melanie; Podzamczer, Daniel; Molina, Jean Michel; Oka, Shinichi; Koenig, Ellen; Trottier, Benoit; Andrade-Villanueva, Jaime; Crofoot, Gordon; Custodio, Joseph M.; Plummer, Andrew; Zhong, Lijie; Cao, Huyen; Martin, Hal; Callebaut, Christian; Cheng, Andrew K.; Fordyce, Marshall W.; Mccallister, Scott; for the GS-US-292-0104/0111 Study Team [...; Pierluigi Viale; ...]Sax, Paul E; Wohl, David; Yin, Michael T.; Post, Frank; Dejesus, Edwin; Saag, Michael; Pozniak, Anton; Thompson, Melanie; Podzamczer, Daniel; Molina, Jean Michel; Oka, Shinichi; Koenig, Ellen; Trottier, Benoit; Andrade-Villanueva, Jaime; Crofoot, Gordon; Custodio, Joseph M.; Plummer, Andrew; Zhong, Lijie; Cao, Huyen; Martin, Hal; Callebaut, Christian; Cheng, Andrew K.; Fordyce, Marshall W.; Mccallister, Scott; for the GS-US-292-0104/0111 Study Team [..; Pierluigi Viale; ..

    Quantitative localized proton-promoted dissolution kinetics of calcite using scanning electrochemical microscopy (SECM)

    Get PDF
    Scanning electrochemical microscopy (SECM) has been used to determine quantitatively the kinetics of proton-promoted dissolution of the calcite (101̅4) cleavage surface (from natural “Iceland Spar”) at the microscopic scale. By working under conditions where the probe size is much less than the characteristic dislocation spacing (as revealed from etching), it has been possible to measure kinetics mainly in regions of the surface which are free from dislocations, for the first time. To clearly reveal the locations of measurements, studies focused on cleaved “mirror” surfaces, where one of the two faces produced by cleavage was etched freely to reveal defects intersecting the surface, while the other (mirror) face was etched locally (and quantitatively) using SECM to generate high proton fluxes with a 25 μm diameter Pt disk ultramicroelectrode (UME) positioned at a defined (known) distance from a crystal surface. The etch pits formed at various etch times were measured using white light interferometry to ascertain pit dimensions. To determine quantitative dissolution kinetics, a moving boundary finite element model was formulated in which experimental time-dependent pit expansion data formed the input for simulations, from which solution and interfacial concentrations of key chemical species, and interfacial fluxes, could then be determined and visualized. This novel analysis allowed the rate constant for proton attack on calcite, and the order of the reaction with respect to the interfacial proton concentration, to be determined unambiguously. The process was found to be first order in terms of interfacial proton concentration with a rate constant k = 6.3 (± 1.3) × 10–4 m s–1. Significantly, this value is similar to previous macroscopic rate measurements of calcite dissolution which averaged over large areas and many dislocation sites, and where such sites provided a continuous source of steps for dissolution. Since the local measurements reported herein are mainly made in regions without dislocations, this study demonstrates that dislocations and steps that arise from such sites are not needed for fast proton-promoted calcite dissolution. Other sites, such as point defects, which are naturally abundant in calcite, are likely to be key reaction sites

    Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart

    Get PDF
    Heart valve anomalies are some of the most common congenital heart defects, yet neither the genetic nor the epigenetic forces guiding heart valve development are well understood. When functioning normally, mature heart valves prevent intracardiac retrograde blood flow; before valves develop, there is considerable regurgitation, resulting in reversing (or oscillatory) flows between the atrium and ventricle. As reversing flows are particularly strong stimuli to endothelial cells in culture, an attractive hypothesis is that heart valves form as a developmental response to retrograde blood flows through the maturing heart. Here, we exploit the relationship between oscillatory flow and heart rate to manipulate the amount of retrograde flow in the atrioventricular (AV) canal before and during valvulogenesis, and find that this leads to arrested valve growth. Using this manipulation, we determined that klf2a is normally expressed in the valve precursors in response to reversing flows, and is dramatically reduced by treatments that decrease such flows. Experimentally knocking down the expression of this shear-responsive gene with morpholine antisense oligonucleotides (MOs) results in dysfunctional valves. Thus, klf2a expression appears to be necessary for normal valve formation. This, together with its dependence on intracardiac hemodynamic forces, makes klf2a expression an early and reliable indicator of proper valve development. Together, these results demonstrate a critical role for reversing flows during valvulogenesis and show how relatively subtle perturbations of normal hemodynamic patterns can lead to both major alterations in gene expression and severe valve dysgenesis
    corecore