7 research outputs found

    Segmental isotopic labeling by asparaginyl endopeptidase-mediated protein ligation

    Get PDF
    Segmental isotopic labeling can facilitate NMR studies of large proteins, multi-domain proteins, and proteins with repetitive sequences by alleviating NMR signal overlaps. Segmental isotopic labeling also allows us to investigate an individual domain in the context of a full-length protein by NMR. Several established methods are available for segmental isotopic labeling such as intein-mediated ligation, but each has specific requirements and limitations. Here, we report an enzymatic approach using bacterially produced asparagine endopeptidase from Oldenlandia affinis for segmental isotopic labeling of a protein with repetitive sequences, a designed armadillo repeat protein, by overcoming some of the shortcomings of enzymatic ligation for segmental isotopic labeling.Peer reviewe

    An Alternative Strategy to Generate Binding Proteins

    No full text

    Modular binder technology by NGS-aided, high-resolution selection in yeast of designed armadillo modules

    No full text
    Establishing modular binders as diagnostic detection agents represents a cost- and time-efficient alternative to the commonly used binders that are generated one molecule at a time. In contrast to these conventional approaches, a modular binder can be designed in silico from individual modules to, in principle, recognize any desired linear epitope without going through a selection and hit-validation process, given a set of preexisting, amino acid-specific modules. Designed armadillo repeat proteins (dArmRP) have been developed as modular binder scaffolds, and we report here the generation of highly specific dArmRP modules by yeast surface display selection, performed on a rationally designed dArmRP library. A selection strategy was developed to distinguish the binding difference resulting from a single amino acid mutation in the target peptide. Our reverse-competitor strategy introduced here employs the designated target as a competitor to increase the sensitivity when separating specific from cross-reactive binders that show similar affinities for the target peptide. With this switch in selection focus from affinity to specificity, we found that the enrichment during this specificity sort is indicative of the desired phenotype, regardless of the binder abundance. Hence, deep sequencing of the selection pools allows retrieval of phenotypic hits with only 0.1% abundance in the selectivity sort pool from the next-generation sequencing data alone. In a proof-of-principle study, a binder was created by replacing all corresponding wild-type modules with a newly selected module, yielding a binder with very high affinity for the designated target that has been successfully validated as a detection agent in western blot analysis

    Off-target-free gene delivery by affinity-purified receptor-targeted viral vectors

    No full text
    We describe receptor-targeted adeno-associated viral (AAV) vectors that allow genetic modification of rare cell types ex vivo and in vivo while showing no detectable off-targeting. Displaying designed ankyrin repeat proteins (DARPins) on the viral capsid and carefully depleting DARPin-deficient particles, AAV vectors were made specific for Her2/neu, EpCAM or CD4. A single intravenous administration of vector targeted to the tumour antigen Her2/neu was sufficient to track 75% of all tumour sites and to extend survival longer than the cytostatic antibody Herceptin. CD4-targeted AAVs hit human CD4-positive cells present in spleen of a humanized mouse model, while CD8-positive cells as well as liver or other off-target organs remained unmodified. Mimicking conditions of circulating tumour cells, EpCAM-AAV detected single tumour cells in human blood opening the avenue for tumour stem cell tracking. Thus, the approach developed here delivers genes to target cell types of choice with antibody-like specificity

    The High Energy Density Scientific Instrument at the European XFEL

    No full text
    The European XFEL delivers up to 27000 intense (>1012 photons) pulses per second, of ultrashort (≤50 fs) and transversely coherent X-ray radiation, at a maximum repetition rate of 4.5 MHz. Its unique X-ray beam parameters enable groundbreaking experiments in matter at extreme conditions at the High Energy Density (HED) scientific instrument. The performance of the HED instrument during its first two years of operation, its scientific remit, as well as ongoing installations towards full operation are presented. Scientific goals of HED include the investigation of extreme states of matter created by intense laser pulses, diamond anvil cells, or pulsed magnets, and ultrafast X-ray methods that allow their diagnosis using self-amplified spontaneous emission between 5 and 25 keV, coupled with X-ray monochromators and optional seeded beam operation. The HED instrument provides two target chambers, X-ray spectrometers for emission and scattering, X-ray detectors, and a timing tool to correct for residual timing jitter between laser and X-ray pulses
    corecore