6 research outputs found

    Nanoresolution real-time 3D orbital tracking for studying mitochondrial trafficking in vertebrate axons in vivo

    Get PDF
    We present the development and in vivo application of a feedback-based tracking microscope to follow individual mitochondria in sensory neurons of zebrafish larvae with nanometer precision and millisecond temporal resolution. By combining various technical improvements, we tracked individual mitochondria with unprecedented spatiotemporal resolution over distances of >100 mu m. Using these nanoscopic trajectory data, we discriminated five motional states: a fast and a slow directional motion state in both the anterograde and retrograde directions and a stationary state. The transition pattern revealed that, after a pause, mitochondria predominantly persist in the original direction of travel, while transient changes of direction often exhibited longer pauses. Moreover, mitochondria in the vicinity of a second, stationary mitochondria displayed an increased probability to pause. The capability of following and optically manipulating a single organelle with high spatiotemporal resolution in a living organism offers a new approach to elucidating their function in its complete physiological context

    Completion of neuronal remodeling prompts myelination along developing motor axon branches

    Get PDF
    Neuronal remodeling and myelination are two fundamental processes during neurodevelopment. How they influence each other remains largely unknown, even though their coordinated execution is critical for circuit function and often disrupted in neuropsychiatric disorders. It is unclear whether myelination stabilizes axon branches during remodeling or whether ongoing remodeling delays myelination. By modulating synaptic transmission, cytoskeletal dynamics, and axonal transport in mouse motor axons, we show that local axon remodeling delays myelination onset and node formation. Conversely, glial differentiation does not determine the outcome of axon remodeling. Delayed myelination is not due to a limited supply of structural components of the axon–glial unit but rather is triggered by increased transport of signaling factors that initiate myelination, such as neuregulin. Further, transport of promyelinating signals is regulated via local cytoskeletal maturation related to activity-dependent competition. Our study reveals an axon branch–specific fine-tuning mechanism that locally coordinates axon remodeling and myelination

    Completion of neuronal remodeling prompts myelination along developing motor axon branches

    Get PDF
    Neuronal remodeling and myelination are two fundamental processes during neurodevelopment. How they influence each other remains largely unknown, even though their coordinated execution is critical for circuit function and often disrupted in neuropsychiatric disorders. It is unclear whether myelination stabilizes axon branches during remodeling or whether ongoing remodeling delays myelination. By modulating synaptic transmission, cytoskeletal dynamics, and axonal transport in mouse motor axons, we show that local axon remodeling delays myelination onset and node formation. Conversely, glial differentiation does not determine the outcome of axon remodeling. Delayed myelination is not due to a limited supply of structural components of the axon-glial unit but rather is triggered by increased transport of signaling factors that initiate myelination, such as neuregulin. Further, transport of promyelinating signals is regulated via local cytoskeletal maturation related to activity-dependent competition. Our study reveals an axon branch-specific fine-tuning mechanism that locally coordinates axon remodeling and myelination

    Trajectory data of antero- and retrograde movement of mitochondria in living zebrafish larvae

    Get PDF
    Recently, a large number of single particle tracking (SPT) approaches have been developed. Generally, SPT techniques can be split into two groups: ex post facto approaches where trajectory extraction is carried out after data acquisition and feedback based approaches that perform particle tracking in real time [1]. One feedback approach is 3D Orbital Tracking, where the laser excitation beam is rotated in a circle about the object, generating a so called orbit [2,3]. By calculating the particle position from the detected intensity after every orbit in relation to its center, this method allows the microscope to follow a single object in real time. The high spatiotemporal resolution of this method and the potential to optically manipulate the followed object during the measurement promises to yield new deep insights into biological systems [4-7]. By upgrading this approach in a way that the specimen is recentered by a xy-stage on the center of the microscope, particle tracking with this long-range tracking feature is no longer limited to the covered field-of-view. This allows for the observation of mitochondrial trafficking in living zebrafish embryos over long distances. Here, we provide the raw data for antero- and retrograde movement of mitochondria labelled with photo-activatable green fluorescent protein (mitoPAGFP). It relates to the scientific article "Nanoresolution real-time 3D orbital tracking for studying mitochondrial trafficking in vertebrate axons in vivo" [8]. By applying a correlation analysis on the trajectories, it is possible to distinguish between active transport and pausing events with less biasing compared to the mean squared displacement approach. (C) 2020 The Authors. Published by Elsevier Inc

    Epileptogenesis following Kainic Acid-Induced Status Epilepticus in Cyclin D2 Knock-Out Mice with Diminished Adult Neurogenesis.

    No full text
    The goal of this study was to determine whether a substantial decrease in adult neurogenesis influences epileptogenesis evoked by the intra-amygdala injection of kainic acid (KA). Cyclin D2 knockout (cD2 KO) mice, which lack adult neurogenesis almost entirely, were used as a model. First, we examined whether status epilepticus (SE) evoked by an intra-amygdala injection of KA induces cell proliferation in cD2 KO mice. On the day after SE, we injected BrdU into mice for 5 days and evaluated the number of DCX- and DCX/BrdU-immunopositive cells 3 days later. In cD2 KO control animals, only a small number of DCX+ cells was observed. The number of DCX+ and DCX/BrdU+ cells/mm of subgranular layer in cD2 KO mice increased significantly following SE (p<0.05). However, the number of newly born cells was very low and was significantly lower than in KA-treated wild type (wt) mice. To evaluate the impact of diminished neurogenesis on epileptogenesis and early epilepsy, we performed video-EEG monitoring of wt and cD2 KO mice for 16 days following SE. The number of animals with seizures did not differ between wt (11 out of 15) and cD2 KO (9 out of 12) mice. The median latency to the first spontaneous seizure was 4 days (range 2-10 days) in wt mice and 8 days (range 2-16 days) in cD2 KO mice and did not differ significantly between groups. Similarly, no differences were observed in median seizure frequency (wt: 1.23, range 0.1-3.4; cD2 KO: 0.57, range 0.1-2.0 seizures/day) or median seizure duration (wt: 51 s, range 23-103; cD2 KO: 51 s, range 23-103). Our results indicate that SE-induced epileptogenesis is not disrupted in mice with markedly reduced adult neurogenesis. However, we cannot exclude the contribution of reduced neurogenesis to the chronic epileptic state

    Epileptogenesis in wt and cD2 KO mice following intra-amygdala kainic acid injection.

    No full text
    <p><b>(A)</b> Neurodegeneration in CA3 of the hippocampus at 8 d after KA-induced status epilepticus. <b>(B)</b> Duration of status epilepticus, <b>(C)</b> percent of animals developing epilepsy, <b>(D)</b> latency to the first spontaneous seizure, <b>(E)</b> seizure frequency in epileptic mice and <b>(F)</b> average spontaneous seizure duration in wt and cD2 KO mice following intra-amygdala kainic acid injection. <b>(G)</b> An example of an electrographic seizure detected in a cD2 KO animal. Arrows in A indicate the area of neuronal loss. Each circle in B and D-F represents one animal, and horizontal bars indicate mean (B) or median (D-F) values; cx—cortex, KO—knock-out, SE—status epilepticus, wt—wild type.</p
    corecore