33 research outputs found

    Examination of the role of the K-ras isoforms in development and neoplasia

    Get PDF

    Learning from the children : exploring preschool children's encounters with ICT at home

    Get PDF
    This paper is an account of our attempts to understand preschool children's experiences with information and communication technologies (ICT) at home. Using case study data, we focus on what we can learn from talking directly to the children that might otherwise have been overlooked and on describing and evaluating the methods we adopted to ensure that we maximised the children's contributions to the research. By paying attention to the children's perspectives we have learned that they are discriminating users of ICT who evaluate their own performances, know what gives them pleasure and who differentiate between operational competence and the substantive activities made possible by ICT

    Cholesterol-sensitive Cdc42 activation regulates actin polymerization for endocytosis via the GEEC pathway

    Get PDF
    Glycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-APs) are present at the surface of living cells in cholesterol dependent nanoscale clusters. These clusters appear to act as sorting signals for the selective endocytosis of GPI-APs via a Cdc42-regulated, dynamin and clathrin-independent pinocytic pathway called the GPI-AP-enriched early endosomal compartments (GEECs) pathway. Here we show that endocytosis via the GEECs pathway is inhibited by mild depletion of cholesterol, perturbation of actin polymerization or overexpression of the Cdc42/Rac-interactive-binding (CRIB) motif of neural Wiskott-Aldrich syndrome protein (N-WASP). Consistent with the involvement of Cdc42-based actin nanomachinery, nascent endocytic vesicles containing cargo for the GEEC pathway co-localize with fluorescent protein-tagged isoforms of Cdc42, CRIB domain, N-WASP and actin; high-resolution electron microscopy on plasma membrane sheets reveals Cdc42-labelled regions rich in green fluorescent protein-GPI. Using total internal reflection fluorescence microscopy at the single-molecule scale, we find that mild cholesterol depletion alters the dynamics of actin polymerization at the cell surface by inhibiting Cdc42 activation and consequently its stabilization at the cell surface. These results suggest that endocytosis into GEECs occurs through a cholesterol-sensitive, Cdc42-based recruitment of the actin polymerization machinery

    H-Ras Nanocluster Stability Regulates the Magnitude of MAPK Signal Output

    Get PDF
    H-Ras is a binary switch that is activated by multiple co-factors and triggers several key cellular pathways one of which is MAPK. The specificity and magnitude of downstream activation is achieved by the spatio-temporal organization of the active H-Ras in the plasma membrane. Upon activation, the GTP bound H-Ras binds to Galectin-1 (Gal-1) and becomes transiently immobilized in short-lived nanoclusters on the plasma membrane from which the signal is propagated to Raf. In the current study we show that stabilizing the H-Ras-Gal-1 interaction, using bimolecular fluorescence complementation (BiFC), leads to prolonged immobilization of H-Ras.GTP in the plasma membrane which was measured by fluorescence recovery after photobleaching (FRAP), and increased signal out-put to the MAPK module. EM measurements of Raf recruitment to the H-Ras.GTP nanoclusters demonstrated that the enhanced signaling observed in the BiFC stabilized H-Ras.GTP nanocluster was attributed to increased H-Ras immobilization rather than to an increase in Raf recruitment. Taken together these data demonstrate that the magnitude of the signal output from a GTP-bound H-Ras nanocluster is proportional to its stability

    Magnetic Energy Powers the Corona: How We Can Understand its 3D Storage & Release

    Full text link
    The coronal magnetic field is the prime driver behind many as-yet unsolved mysteries: solar eruptions, coronal heating, and the solar wind, to name a few. It is, however, still poorly observed and understood. We highlight key questions related to magnetic energy storage, release, and transport in the solar corona, and their relationship to these important problems. We advocate for new and multi-point co-optimized measurements, sensitive to magnetic field and other plasma parameters, spanning from optical to γ\gamma-ray wavelengths, to bring closure to these long-standing and fundamental questions. We discuss how our approach can fully describe the 3D magnetic field, embedded plasma, particle energization, and their joint evolution to achieve these objectives.Comment: White paper submitted to the Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033; 16 pages, 3 figure

    COMPLETE: A flagship mission for complete understanding of 3D coronal magnetic energy release

    Full text link
    COMPLETE is a flagship mission concept combining broadband spectroscopic imaging and comprehensive magnetography from multiple viewpoints around the Sun to enable tomographic reconstruction of 3D coronal magnetic fields and associated dynamic plasma properties, which provide direct diagnostics of energy release. COMPLETE re-imagines the paradigm for solar remote-sensing observations through purposefully co-optimized detectors distributed on multiple spacecraft that operate as a single observatory, linked by a comprehensive data/model assimilation strategy to unify individual observations into a single physical framework. We describe COMPLETE's science goals, instruments, and mission implementation. With targeted investment by NASA, COMPLETE is feasible for launch in 2032 to observe around the maximum of Solar Cycle 26.Comment: White paper submitted to the Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033; 10 pages, 6 figures, 1 tabl

    Improving Multi-Dimensional Data Formats, Access, and Assimilation Tools for the Twenty-First Century

    Full text link
    Heliophysics image data largely relies on a forty-year-old ecosystem built on the venerable Flexible Image Transport System (FITS) data standard. While many in situ measurements use newer standards, they are difficult to integrate with multiple data streams required to develop global understanding. Additionally, most data users still engage with data in much the same way as they did decades ago. However, contemporary missions and models require much more complex support for 3D multi-parameter data, robust data assimilation strategies, and integration of multiple individual data streams required to derive complete physical characterizations of the Sun and Heliospheric plasma environment. In this white paper we highlight some of the 21st^\mathsf{st} century challenges for data frameworks in heliophysics, consider an illustrative case study, and make recommendations for important steps the field can take to modernize its data products and data usage models. Our specific recommendations include: (1) Investing in data assimilation capability to drive advanced data-constrained models, (2) Investing in new strategies for integrating data across multiple instruments to realize measurements that cannot be produced from single observations, (3) Rethinking old data use paradigms to improve user access, develop deep understanding, and decrease barrier to entry for new datasets, and (4) Investing in research on data formats better suited for multi-dimensional data and cloud-based computing.Comment: White paper submitted to the Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033; 9 pages, 3 figure

    Slow Solar Wind Connection Science during Solar Orbiter’s First Close Perihelion Passage

    Get PDF
    The Slow Solar Wind Connection Solar Orbiter Observing Plan (Slow Wind SOOP) was developed to utilize the extensive suite of remote-sensing and in situ instruments on board the ESA/NASA Solar Orbiter mission to answer significant outstanding questions regarding the origin and formation of the slow solar wind. The Slow Wind SOOP was designed to link remote-sensing and in situ measurements of slow wind originating at open–closed magnetic field boundaries. The SOOP ran just prior to Solar Orbiter’s first close perihelion passage during two remote-sensing windows (RSW1 and RSW2) between 2022 March 3–6 and 2022 March 17–22, while Solar Orbiter was at respective heliocentric distances of 0.55–0.51 and 0.38–0.34 au from the Sun. Coordinated observation campaigns were also conducted by Hinode and IRIS. The magnetic connectivity tool was used, along with low-latency in situ data and full-disk remote-sensing observations, to guide the target pointing of Solar Orbiter. Solar Orbiter targeted an active region complex during RSW1, the boundary of a coronal hole, and the periphery of a decayed active region during RSW2. Postobservation analysis using the magnetic connectivity tool, along with in situ measurements from MAG and SWA/PAS, showed that slow solar wind originating from two out of three of the target regions arrived at the spacecraft with velocities between ∼210 and 600 km s−1. The Slow Wind SOOP, despite presenting many challenges, was very successful, providing a blueprint for planning future observation campaigns that rely on the magnetic connectivity of Solar Orbiter

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Galectin-1 Is a Novel Structural Component and a Major Regulator of H-Ras Nanoclusters

    Get PDF
    The organization of Ras proteins into nanoclusters on the inner plasma membrane is essential for Ras signal transduction, but the mechanisms that drive nanoclustering are unknown. Here we show that epidermal growth factor receptor activation stimulates the formation of H-Ras.GTP-Galectin-1 (Gal-1) complexes on the plasma membrane that are then assembled into transient nanoclusters. Gal-1 is therefore an integral structural component of the H-Ras–signaling nanocluster. Increasing Gal-1 levels increases the stability of H-Ras nanoclusters, leading to enhanced effector recruitment and signal output. Elements in the H-Ras C-terminal hypervariable region and an activated G-domain are required for H-Ras–Gal-1 interaction. Palmitoylation is not required for H-Ras–Gal-1 complex formation, but is required to anchor H-Ras–Gal-1 complexes to the plasma membrane. Our data suggest a mechanism for H-Ras nanoclustering that involves a dual role for Gal-1 as a critical scaffolding protein and a molecular chaperone that contributes to H-Ras trafficking by returning depalmitoylated H-Ras to the Golgi complex for repalmitoylation
    corecore