250 research outputs found

    Expression of C4.4A in an in Vitro Human Tissue-Engineered Skin Model

    Get PDF
    A multi-LU-domain-containing protein denoted C4.4A exhibits a tightly regulated membrane-associated expression in the suprabasal layers of stratified squamous epithelia such as skin and the esophagus, and the expression of C4.4A is dysregulated in various pathological conditions. However, the biological function of C4.4A remains unknown. To enable further studies, we evaluated the expression of C4.4A in monolayer cultures of normal human keratinocytes and in tissue-engineered skin substitutes (TESs) produced by the self-assembly approach, which allow the formation of a fully differentiated epidermis tissue. Results showed that, in monolayer, C4.4A was highly expressed in the centre of keratinocyte colonies at cell-cell contacts areas, while some cells located at the periphery presented little C4.4A expression. In TES, emergence of C4.4A expression coincided with the formation of the stratum spinosum. After the creation of a wound within the TES, C4.4A expression was observed in the suprabasal keratinocytes of the migrating epithelium, with the exception of the foremost leading keratinocytes, which were negative for C4.4A. Our results are consistent with previous data in mouse embryogenesis and wound healing. Based on these findings, we conclude that this human TES model provides an excellent surrogate for studies of C4.4A and Haldisin expressions in human stratified epithelia

    The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain.

    Get PDF
    GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and their lipolytic processing. The current work conceptualizes a model for the GPIHBP1•LPL interaction based on biophysical measurements with hydrogen-deuterium exchange/mass spectrometry, surface plasmon resonance, and zero-length cross-linking. According to this model, GPIHBP1 comprises two functionally distinct domains: (1) an intrinsically disordered acidic N-terminal domain; and (2) a folded C-terminal domain that tethers GPIHBP1 to the cell membrane by glycosylphosphatidylinositol. We demonstrate that these domains serve different roles in regulating the kinetics of LPL binding. Importantly, the acidic domain stabilizes LPL catalytic activity by mitigating the global unfolding of LPL's catalytic domain. This study provides a conceptual framework for understanding intravascular lipolysis and GPIHBP1 and LPL mutations causing familial chylomicronemia

    Improved PET imaging of uPAR expression using new (64)Cu-labeled cross-bridged peptide ligands:comparative in vitro and in vivo studies

    Get PDF
    The correlation between uPAR expression, cancer cell invasion and metastases is now well-established and has prompted the development of a number of uPAR PET imaging agents, which could potentially identify cancer patients with invasive and metastatic lesions. In the present study, we synthesized and characterized two new cross-bridged (64)Cu-labeled peptide conjugates for PET imaging of uPAR and performed a head-to-head comparison with the corresponding and more conventionally used DOTA conjugate. Based on in-source laser-induced reduction of chelated Cu(II) to Cu(I), we now demonstrate the following ranking with respect to the chemical inertness of their complexed Cu ions: DOTA-AE105 << CB-TE2A-AE105 < CB-TE2A-PA-AE105, which is correlated to their corresponding demetallation rate. No penalty in the uPAR receptor binding affinity of the targeting peptide was encountered by conjugation to either of the macrobicyclic chelators (IC(50) ~ 5-10 nM) and high yields and radiochemical purities (>95%) were achieved in all cases by incubation at 95ÂşC. In vivo, they display identical tumor uptake after 1h, but differ significantly after 22 hrs, where the DOTA-AE105 uptake remains surprisingly high. Importantly, the more stable of the new uPAR PET tracers, (64)Cu-CB-TE2A-PA-AE105, exhibits a significantly reduced liver uptake compared to (64)Cu-DOTA-AE105 as well as (64)Cu-CB-TE2A-AE105, (p<0.0001), emphasizing that our new in vitro stability measurements by mass spectrometry predicts in vivo stability in mice. Specificity of the best performing ligand, (64)Cu-CB-TE2A-PA-AE105 was finally confirmed in vivo using a non-binding (64)Cu-labeled peptide as control ((64)Cu-CB-TE2A-PA-AE105(mut)). This control PET-tracer revealed significantly reduced tumor uptake (p<0.0001), but identical hepatic uptake compared to its active counterpart ((64)Cu-CB-TE2A-PA-AE105) after 1h. In conclusion, our new approach using in-source laser-induced reduction of Cu(II)-chelated PET-ligands provides useful information, which are predictive for the tracer stability in vivo in mice. Furthermore, the increased stability of our new macrobicyclic (64)Cu-CB-TE2A-PA-AE105 PET ligand is paralleled by an excellent imaging contrast during non-invasive PET scanning of uPAR expression in preclinical mouse cancer models. The translational promises displayed by this PET-tracer for future clinical cancer patient management remains, however, to be investigated

    Did evolution create a flexible ligand-binding cavity in the urokinase receptor through deletion of a plesiotypic disulfide bond?

    Get PDF
    The urokinase receptor (uPAR) is a founding member of a small protein family with multiple Ly6/uPAR (LU) domains. The motif defining these LU domains contains five plesiotypic disulfide bonds stabilizing its prototypical three-fingered fold having three protruding loops. Notwithstanding the detailed knowledge on structure-function relationships in uPAR, one puzzling enigma remains unexplored. Why does the first LU domain in uPAR (DI) lack one of its consensus disulfide bonds, when the absence of this particular disulfide bond impairs the correct folding of other single LU domain-containing proteins? Here, using a variety of contemporary biophysical methods, we found that reintroducing the two missing half-cystines in uPAR DI caused the spontaneous formation of the corresponding consensus 7–8 LU domain disulfide bond. Importantly, constraints due to this cross-link impaired (i) the binding of uPAR to its primary ligand urokinase and (ii) the flexible interdomain assembly of the three LU domains in uPAR. We conclude that the evolutionary deletion of this particular disulfide bond in uPAR DI may have enabled the assembly of a high-affinity urokinase-binding cavity involving all three LU domains in uPAR. Of note, an analogous neofunctionalization occurred in snake venom α-neurotoxins upon loss of another pair of the plesiotypic LU domain half-cystines. In summary, elimination of the 7–8 consensus disulfide bond in the first LU domain of uPAR did have significant functional and structural consequences

    Neutralisation of uPA with a Monoclonal Antibody Reduces Plasmin Formation and Delays Skin Wound Healing in tPA-Deficient Mice

    Get PDF
    Background: Proteolytic degradation by plasmin and metalloproteinases is essential for epidermal regeneration in skin wound healing. Plasminogen deficient mice have severely delayed wound closure as have mice simultaneously lacking the two plasminogen activators, urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA). In contrast, individual genetic deficiencies in either uPA or tPA lead to wound healing kinetics with no or only slightly delayed closure of skin wounds. Methodology/Principal Findings: To evaluate the therapeutic potential in vivo of a murine neutralizing antibody directed against mouse uPA we investigated the efficacy in skin wound healing of tPA-deficient mice. Systemic administration of the anti-mouse uPA monoclonal antibody, mU1, to tPA-deficient mice caused a dose-dependent delay of skin wound closure almost similar to the delayed kinetics observed in uPA;tPA double-deficient mice. Analysis of wound extracts showed diminished levels of plasmin in the mU1-treated tPA-deficent mice. Immunohistochemistry revealed that fibrin accumulated in the wounds of such mU1-treated tPA-deficent mice and that keratinocyte tongues were aberrant. Together these abnormalities lead to compromised epidermal closure. Conclusions/Significance: Our findings demonstrate that inhibition of uPA activity with a monoclonal antibody in adult tPA-deficient mice mimics the effect of simultaneous genetic ablation of uPA and tPA. Thus, application of the murin

    Evolution and Medical Significance of LU Domain-Containing Proteins

    Get PDF
    Proteins containing Ly6/uPAR (LU) domains exhibit very diverse biological functions and have broad taxonomic distributions in eukaryotes. In general, they adopt a characteristic three-fingered folding topology with three long loops projecting from a disulfide-rich globular core. The majority of the members of this protein domain family contain only a single LU domain, which can be secreted, glycolipid anchored, or constitute the extracellular ligand binding domain of type-I membrane proteins. Nonetheless, a few proteins contain multiple LU domains, for example, the urokinase receptor uPAR, C4.4A, and Haldisin. In the current review, we will discuss evolutionary aspects of this protein domain family with special emphasis on variations in their consensus disulfide bond patterns. Furthermore, we will present selected cases where missense mutations in LU domain-containing proteins leads to dysfunctional proteins that are causally linked to genesis of human disease
    • …
    corecore