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The urokinase receptor (uPAR) is a founding member of a
small protein family with multiple Ly6/uPAR (LU) domains.
The motif defining these LU domains contains five plesiotypic
disulfide bonds stabilizing its prototypical three-fingered fold
having three protruding loops. Notwithstanding the detailed
knowledge on structure-function relationships in uPAR, one
puzzling enigma remains unexplored. Why does the first LU
domain in uPAR (DI) lack one of its consensus disulfide bonds,
when the absence of this particular disulfide bond impairs the
correct folding of other single LU domain-containing proteins?
Here, using a variety of contemporary biophysical methods, we
found that reintroducing the two missing half-cystines in uPAR
DI caused the spontaneous formation of the corresponding con-
sensus 7– 8 LU domain disulfide bond. Importantly, constraints
due to this cross-link impaired (i) the binding of uPAR to its
primary ligand urokinase and (ii) the flexible interdomain
assembly of the three LU domains in uPAR. We conclude that
the evolutionary deletion of this particular disulfide bond in
uPAR DI may have enabled the assembly of a high-affinity uroki-
nase-binding cavity involving all three LU domains in uPAR. Of
note, an analogous neofunctionalization occurred in snake venom
�-neurotoxins upon loss of another pair of the plesiotypic LU
domain half-cystines. In summary, elimination of the 7–8 consen-
sus disulfide bond in the first LU domain of uPAR did have signif-
icant functional and structural consequences.

The urokinase-type plasminogen activator receptor (uPAR)2

is an extracellular membrane protein composed of three homo-

logous Ly6/uPAR-type (LU) domains and a C-terminal glyco-
sylphosphatidylinositol (GPI) membrane anchor (1). It serves
to focalize plasminogen activation on cell surfaces via its high-
affinity binding to the urokinase-type plasminogen activator
(uPA) (2). In so doing, it facilitates extravascular fibrin surveil-
lance reducing the adverse effects of chronic inflammation
caused by unremitting fibrin deposition (3). Besides promoting
pericellular proteolysis, the uPA�uPAR interaction also stimu-
lates cell adhesion and migration via direct and indirect inter-
actions with vitronectin and integrins (4 –9). Elegant transgenic
mouse models show that the interaction between uPA and
uPAR promotes hepatic fibrin clearance (3) and improves neu-
ronal recovery after either cerebral ischemia (10, 11) or spinal
cord injury (12). Notwithstanding these beneficial effects, the
uPA�uPAR interaction may also elicit detrimental pathological
effects, particularly in relationship to chronic inflammation. In
genetic mouse models, the interplay between uPA and uPAR
augments the pathogenesis of collagen-induced arthritis (13,
14). In line with these causal correlations, high plasma levels of
shed uPA/uPAR predict poor prognosis in several pathologic
conditions with inflammatory lesions, e.g. bacterial infections
(15, 16), kidney disease (17, 18), and invasive and metastatic
solid cancers (19). The latter association spurred a considerable
interest in developing uPAR-specific targeting strategies
intended for use in cancer therapy (20 –24). These initiatives
are now being supplemented by the development of uPAR-tar-
geting probes for noninvasive imaging of uPAR expression
using either (i) positron emission tomography to guide patient
staging (25–27) or (ii) near-IR fluorescence to guide precision
cancer surgery by improving margin resection (28 –30).

Crystal structures of uPAR solved in complex with its natural
protein ligands (Fig. 1, C and D) (31–34), small molecule antag-
onists (21, 35, 36), or antibodies (31, 37) reveal that all three LU
domains in uPAR combine to form a compact globular struc-
ture. This assembly creates (i) a large and hydrophobic uPA-
binding cavity comprising elements from all three LU domains
and (ii) a smaller peripheral binding site for the somatomedin B
(SMB) domain of vitronectin at the interface between the first
(DI) and second (DII) LU domain in uPAR. Although these
binding sites are nonoverlapping they do, nevertheless, interact
cooperatively. Prior uPA-binding thus increases uPAR’s affinity
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for vitronectin (7) and in so doing it leads to increased cell
adhesion and migration (5, 8, 9). We showed previously that the
dynamic assembly of the LU domains in uPAR enables this
allosteric regulation of ligand binding (5, 38). Combining our
biophysical and functional data led us to conclude that uPA
occupancy drives uPAR into a more closed and compact con-
formation and this increases the affinity for SMB (5). Locking
uPAR permanently in this compact conformation, by introduc-
ing a nonnative disulfide bond between DI and DIII, by-passed
the cooperativity of uPA binding and generated a constitutive
high-affinity binding site for SMB (6, 39). Our data, further-
more, suggested that uPAR DI plays a dominating role in this
flexibility (38). Given that this particular domain differs from
the otherwise invariant LU-consensus motif, inasmuch as it
lacks one of the 5 plesiotypic disulfide bonds (40), we speculate
that the loss of this structural constraint could have been
instrumental for evolving high-affinity uPA binding and gain-
ing cooperativity in vitronectin binding. This proposition is not
unprecedented as snake venom �-neurotoxins (representing
secreted single LU-domain proteins) developed potent neuro-
toxicity toward synapsid targets and underwent neofunctional-
ization after deletion of a plesiotypic disulfide bond (41). In this
study, we therefore introduced the lacking consensus disulfide
bond in human uPAR DI and studied the consequences thereof
on the structural flexibility and ligand binding properties of
intact uPAR.

Results

Loss of a consensus disulfide bond in uPAR DI

Sequence alignments of the three homologous LU domains
in human uPAR clearly show that the 5-disulfide bond signa-
ture, considered a plesiotypic trait of ancient three-fingered
neurotoxins (41), is maintained in both uPAR DII and uPAR
DIII (Fig. 1A). This primordial disulfide pattern was first iden-
tified in the basal-type �-neurotoxins (e.g. denmotoxin) that are
present in venoms of nonfront-fanged snakes (Colubridae) that
feed preferentially on nonmammalian prey (41, 42). In accord-
ance with this feeding behavior, their �-neurotoxins have only
weak affinity for mammalian nicotinic acetylcholine receptors
(41, 42). In the more advanced elapid snakes, the �-neurotoxins
gained high affinity for mammalian acetylcholine receptors via
deletion of the 2–3 LU consensus disulfide bond in loop 1 (41,
42), as illustrated in Fig. 1A. Intriguingly, this sequence align-
ment and our experimental disulfide assignments (31, 32, 35,
40) reveal that uPAR DI unexpectedly lacks another of the
invariant disulfide bonds that defines the ancient LU protein
domain fold. In this case, the missing disulfide (denoted 7– 8 in
Fig. 1) is located at the base of loop 3 connecting �-strands E
and F (Fig. 1, E and F) and it is absent from DIs of all known
mammalian orthologues of uPAR (Fig. S1). The deletion of this
particular disulfide bond in uPAR during evolution is remark-
able given that single LU domain-containing proteins, such as
GPIHBP1, CD59, and �-bungarotoxin require this disulfide
bond for their correct protein folding and function (43–45).

Reintroducing the missing disulfide bond in uPAR DI

To assign the most probable site(s) for reintroducing the pri-
mordial 7– 8 consensus disulfide bond in uPAR DI, we exam-

ined primary sequence alignments of individual LU domains.
This clearly pinpointed Thr51 and Val70 as the most promising
candidate pair (Fig. 1A, Figs. S1 and S8). This notion was further
substantiated by the pairwise C�–C� atom distances in seven
different crystal structures available for uPAR in complex with
various ligands (Table S5). The C�–C� distances of these
Thr51–Val70 pairs were 6.4 � 0.5 Å, which is slightly longer
than the distances for the bona fide 7– 8 consensus disulfide
bonds present in DII (4.0 � 0.2 Å) and DIII (3.9 � 0.4 Å).
Nonetheless, evaluations focused only on minimizing struc-
tural perturbations highlighted yet another possible candidate
pair, as the C�–C� atoms for Lys50 and Val70 were only 5.0 � 0.4
Å apart.

Based on these considerations, we chose to express both
uPART51C-V70C and uPARK50C-V70C (residues 1–283) in Dro-
sophila S2-cells and purify the secreted proteins. To confirm
the oxidation status of the introduced cysteine residues (i.e.
validating that they are indeed engaged in disulfide bond for-
mation), we subjected uPAR to limited proteolysis with chymo-
trypsin under nondenaturing conditions. We optimized the
conditions to hydrolyze predominately the Tyr87–Ser88 peptide
bond in the linker region between DI and DII and to a lesser
extent the Tyr57–Arg58 peptide bond located in loop 3 of DI.
Mass spectrometry confirmed that all cysteine residues in these
protein preparations were engaged in disulfide bonding (Table
1, Fig. S2).

Introducing the 7– 8 disulfide bond desensitizes DI to
enzymatic deglycosylation and limited proteolysis in intact
uPAR

We suspected that the inherent flexibility of DI as well as
its assembly with DII and DIII were likely to be perturbed by
the constraints introduced by the additional disulfide bond.
Several independent lines of experimental evidence support
this assumption.

Introducing the 7– 8 disulfide bond rendered the glycan
attached to DI (Asn52) resistant toward PNGase F-mediated
release, when incubating intact uPAR with the deglycosidase
under nondenaturing conditions. As shown in Fig. 2A, PNGase
F readily removed the glycan attached to DI from full-length
uPARwt, but was unable to do so in uPART51C-V70C. Likewise,
uPARK50C-V70C was a very poor substrate for PNGase F.
Notably, a similar resilience toward PNGase F was acquired
by uPARwt when it was driven into its closed conformation
either by uPA binding (46) or by insertion of a remote inter-
domain disulfide bond (uPARH47C-N259C, Fig. 1G) (6). The
accessibility of the glycan on Asn52 to PNGase F was thus
markedly compromised by the structural constraints origi-
nating from the introduction of the 7– 8 disulfide bond
between �-strands IE and IF (Fig. 1F) and this recapitulated
the properties observed for uPAR in complex with uPA. All
glycans attached to DII or DIII proved resistant to PNGase F
in all tested uPAR variants.

Probing the various uPAR mutants by limited proteolysis
with chymotrypsin revealed that the cleavage efficiency of the
exposed linker region between DI and DII (Tyr87–Ser88) was
largely unaffected by the constraints from the additional disulfide
bonds or by occupancy with GFD (Fig. 2B). In contrast, the sensi-
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tivity toward a secondary cleavage site at Tyr57–Arg58 within loop
3 proved markedly different between the various uPAR mutants.
Although uPART51C-V70C appeared slightly more prone to this
cleavage compared with uPARwt, uPARH47C-N259C was refractory.
We suspect that this resistance reflects that DI remains fully inte-
grated with DIIDIII in uPARH47C-N259C despite having a cleaved
linker region between DI and DII (6). Maintaining the compact
globular three-domain assembly of intact uPAR would thus shield

Tyr57–Arg58 from proteolysis. Aligned with that proposition, we
observed that GFD occupancy also prevents the cleavage at this
position (Fig. 2B). An unexpected fuzziness in the electrophoretic
mobility of the 1–57 fragment from uPARK50C-V70C complicated
the kinetic evaluation of the second chymotrypsin cleavage event
in this mutant. The origin of this aberrant mobility remains
unclear. Mass spectrometry of uPARK50C-V70C digested for the
24 h showed only the expected mass of DI with one internal pep-

Figure 1. Sequence alignment of LU domains in human uPAR and snake venom �-neurotoxins. A shows an alignment of primary sequences for the three
LU domains in uPAR (Homo sapiens, Q03405) and the single LU domains in the snake venom toxins: demotoxin (Boiga dendrophilia, DQ366293), erabutoxin a
(Laticuda semifasciata, P60775), and �-cobratoxin (Naja kauthia, P01391). Linker regions and extensions are omitted from the alignment (their presence are
indicated by �). Half-cystines are highlighted in yellow boxes along with their disulfide connectivity. Arrows indicate Thr51 and Val70 in uPAR DI. Residues located
in the ligand-binding interface in crystal structures of ATF�uPAR (34) and �-cobratoxin�AChBP (71) complexes are highlighted in green, as are residues
important for neurotoxicity of eraboutoxin a (72). The crystal structure of uPAR is shown in B as a cartoon representation (DI, cyan; DII, wheat; DIII, blue). C shows
the ATF�uPAR complex with uPAR in a gray surface representation and ATF (containing GFD and a kringle domain) in cartoon representation. D shows the
ATF�uPAR�SMB complex. E shows the LU domain in uPAR DI (residues 1–77) with �-strands in cyan and disulfide bonds as yellow sticks. A yellow hatched line
between the C�-atoms of Thr51 and Val70 illustrates one possible position of the lacking 7– 8 disulfide bond. F shows the same structure tilted 90° to illustrate
their structural constraint on the �-sheets and the proximity of the N-linked glycosylation site (Asn52) and the lacking 7– 8 consensus disulfide bond. F shows
the positons of the introduced disulfide bonds: Thr51–Val70 (*) and His47–Asn259 (**). Protein structures were created with PyMol (Schrödinger, LLC) using the
PDB code 3BTI.
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tide cleavage (�18 Da). Furthermore, this mass collapsed com-
pletely into the expected mass for the 1–57 fragment upon reduc-
tion (data not shown).

One plausible mechanism explaining these differences in the
sensitivity of Tyr57–Arg58 to chymotrypsin cleavage is that they
report on the half-life of the assembled three LU domains after
the initial Tyr87–Ser88 cleavage. In one extreme case, DI would
remain covalently tethered to DIIDIII thus sterically shielding
Tyr57–Arg58 (e.g. in uPARH47C-N259C). In another case, little or
no DI would remain attached to DIIDIII thus allowing signifi-
cant cleavage at this position (e.g. in uPART51C-V70C). To test
this possibility, we performed size exclusion chromatogra-
phy of samples freshly treated with chymotrypsin (Fig. 3).
The elution profiles from the size exclusion column
revealed: (i) that uPAR DI released by limited proteolysis
from uPARwt remains partly associated to DIIDIII (Fig. 3A);
(ii) that prior occupancy with GFD greatly enhances this
association (Fig. 3C); and (iii) that introduction of the 7– 8
consensus disulfide bond completely eliminates the nonco-
valent association of DI and DIIDIII (Fig. 3, B and D). Com-
bined, these data provide further evidence supporting the
notion that the constraints from the 7– 8 disulfide bond
lower the propensity for the globular assembly of DI-DII-
DIII, which to some extent relies on a prominent contribu-
tion from �IE to the DI-DII interface (Fig. 1, B and E).

Flexibility in the globular three-domain assembly of uPAR by
small angle X-ray scattering

To gain further insights into possible differences in the inter-
domain flexibility between the various disulfide-constrained
uPAR conformers, we performed small angle X-ray scattering
(SAXS) analyses. We analyzed both uPAR and uPAR�ATF com-
plexes to compare the domain flexibility before and after
ligand-induced compaction of the receptor. To maximize sam-
ple monodispersity, we fractionated uPAR and uPAR�ATF
complexes by size exclusion chromatography before collecting
batch scattering data by SAXS. From the normalized scattering
data, we first derived the intra-particle distance distribution
function, p(r) providing model-independent information on
the shape parameters (Fig. 4). Comparison of the different
unoccupied uPAR mutants revealed that only uPARH47C-N259C

exhibits a symmetrical, bell-shaped p(r) function indicative
of a compact and globular structure with a radius of gyration
(Rg) of 22.4 � 0.1 Å and a maximal particle dimension (Dmax) of
70 � 5 Å (Table S2). In contrast, reintroducing the missing 7– 8
consensus disulfide in uPAR DI did not lead to large scale
changes in the overall shape parameters, the p(r) functions for
uPARK50C-V70C and uPART51C-V70C are almost superimposable
onto that of uPARwt (Fig. 4B). Upon ATF binding, all uPAR
disulfide conformers compacted into similar sized particles
with a Dmax of 90 Å (Fig. 4D, Tables S1–S4). A small shift to
higher distances in the p(r) function of the uPARwt�ATF com-
plex is observed relative to ATF complexes with the uPAR
disulfide mutants, but whether this reflects a significant struc-
tural difference is unclear. Nonetheless, transforming the scat-
tering data into dimensionless Kratky plots provides a clear
ranking of the unoccupied uPAR disulfide conformers into
three groups according to their degree of flexibility. This trans-
formation of the SAXS data are particularly useful to obtain a
semi-quantitative analysis of the propensity of a given protein
to adopt a globular fold (represented by a bell-shaped curve

Table 1
Verification of disulfide bond status by MS
uPAR DI (residues 1– 87) was excised from intact uPAR1–283 by limited chymotryp-
sin digestion and the molecular masses were determined by LC-ESI-MS and maxi-
mum entropy (MaxEnt1) deconvolution of the charge state distributions of the
proteins (settings, Gaussian FWHM: 1.0 and resolution: 0.25 Da/channel). The
calculated masses are from the primary sequences including a paucimannosidic
glycan (Man3GlcNAc2Fuc; 1,038.5 Da) tethered to Asn52 in S2-cells produced uPAR
(42).

uPAR1– 87 Measured mass Calculated mass �Mass

wt 10,792.00 10,792.04 �0.04
K50C–V70C 10,769.05 10,769.01 0.04
T51C–V70C 10,796.15 10,796.08 0.07

10,814.35 10,796.08 18.27a

C6S–C12S 10,762.20 10,761.93 0.27
a This mass difference represents uPAR1– 87 with a hydrolyzed peptide bond

(Tyr57–Arg58), but the fragments (1–57 and 58 – 87) remain covalently attached
via the introduced disulfide bond between Cys51 and Cys70. The corresponding
mass spectra are displayed in Fig. S2.

Figure 2. The presence of a 7– 8 disulfide bond alters the sensitivity of
uPAR to deglycosylation and limited proteolysis. A shows the enzymatic
removal of the glycan tethered to Asn52 in intact uPAR under nondenaturing
conditions by PNGase F. To illustrate the selective deglycosylation of DI, sub-
sequent incubation with chymotrypsin liberated DI from DIIDIII before anal-
ysis by SDS-PAGE of the reduced and alkylated samples. Second to sixth lanes
show that in uPARwt the glycan is readily removed, except when uPAR is
bound to GFD. Seventh to 12th lanes show that the glycan in uPARH47C-N259C,
uPARK50C-V70C, and uPART51-V70C is refractive to PNGase F. B shows the sensi-
tivity of various uPAR variants to cleavage by chymotrypsin under nondena-
turing conditions (E:S of 1:750 (w/w)). Colored arrows in A and B highlight the
different uPAR fragments: white, intact uPAR; yellow, DIIDIII; green, DI residues
1– 87; red, DI residues 1– 87 without any glycan; black, DI residues 1–57. Non-
cropped SDS-PAGE gels are shown in Fig. S3.
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with peak at 1.104 for qRg � �3) or be intrinsically disordered
(represented by a hyperbolic curve with a plateau around qRg
values of 1.5–2.0). From the Kratky plots presented in Fig. 5A,
uPARwt exhibits the greatest flexibility and uPARH47C-N259C is
stable and globular. Both uPAR variants with an intact 7– 8
disulfide bond show an intermediate flexibility (Fig. 5A). In the
presence of ATF, this difference in flexibility largely disappears,
as illustrated by the Kratky plots in Fig. 5B. SAXS-driven
ensemble modeling of the scattering data by the ensemble opti-
mization method (EOM) yielded a similar conclusion regarding

the flexibility of unoccupied uPAR (Fig. 5, C and D). In this
analysis, a homogeneous ensemble of relatively compact struc-
tures provides an excellent fit to the scattering data for
uPARH47C-N259C with low flexibility metrics (Rflex of 47%, rela-
tive to the threshold of randomness: 85%, determined from the
random pool) calculated from the probability distributions
(47). In contrast, a heterogeneous ensemble comprising both
extended and compact conformations with a relatively high
Rflex of 81% is required to fit the scattering data for uPARwt.
Intermediate ensemble compositions with Rflex values of 74 and

Figure 3. Size exclusion chromatography reveals that DI remains partly attached to DIIDIII in chymotrypsin-cleaved uPARwt but not in the presence
of the 7– 8 disulfide bond. A–F show the elution profiles of various uPAR mutants subjected to limited chymotrypsin cleavage from a SuperdexTM 75 HR10/300
size exclusion chromatography (injected 50 �l of 1 mg of uPAR/ml). The insets show silver-stained SDS-polyacrylamide gels of the relevant fractions analyzed
after reduction and alkylation (the light gray line at the bottom of the chromatograms identifies the analyzed fractions). Asterisks identify peak fractions and the
yellow arrows show DI associated to DIIDIII; white arrows show detached DI. A, uPARwt (note, 20 –30% of DI co-elutes with DIIDIII). B, uPART51C-V70C (no
co-elution). C, uPARwt in the presence of a 4-fold molar excess of GFD (note, �90% of DI co-elutes with DIIDIII and the peak eluted earlier indicative of the
formation of a trimolecular DI�GFD�DIIDIII complex). D, uPARK50C-V70C (no co-elution). E, uPARH47C-N259C (note, 100% DI co-elutes with DIIDIII due to the covalent
tether between DI and DIII). F, uPARC6S-C12S (note, 5–10% of DI co-elutes with DIIDIII).
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73% provide good fits to uPART51C-V70C and uPARK50C-V70C,
respectively. These properties are also evident from the variations
in shape observed in the refined ab initio surface envelopes recon-
structed from the experimental SAXS data (Fig. S4). Extended
models are generated for the highly flexible variants (uPARwt,
uPART51C-V70C, and uPARK50C-V70C), in contrast to the compact
models generated for the less flexible uPARH47C-N259C and all
uPAR�ATF complexes.

Dynamics of uPAR DI

Previously we showed with hydrogen-deuterium exchange
MS (HDX-MS) that uPAR DI undergoes a pronounced change
in flexibility during the compaction of intact uPAR that occurs
on uPA binding (38). In particular, peptides spanning the third
loop of DI (i.e. �IE and �IF) experience significant reductions in

their deuterium uptake when uPAR is driven into its compact
state by uPA binding (38). Due to the covalent tethering of �IE
and �IF by the 7– 8 consensus disulfide bond in LU domains, we
suspected that it could stabilize the �-sheet between strands E
and F in uPAR DI and this could in part be reconciled with the
reduced flexibility observed in the Kratky plot of the SAXS data
(Fig. 5A). To probe this proposition further, we performed a
continuous deuterium labeling of the different uPAR disulfide
variants in the presence or absence of saturating levels of GFD
and determined the deuterium uptake values by MS after pep-
sin digestion with special emphasis on peptide(57– 66). The
deuterium uptake plots for this peptide reveals a considerable
variability in the flexibility of �IE and �IF in the different disul-
fide variants (Fig. 6A). Interestingly, the ranking of the deute-
rium uptake recapitulates to some extent the flexibility assigned

Figure 4. Comparison of molecular shape parameters of the uPAR disulfide variants by SAXS. A and B show the SAXS data and real-space distance-
distribution functions of the uPAR disulfide variants. C and D show the SAXS data and real-space distribution functions of the uPAR variants in complex with
ATF. Shown are experimental data (circles) along with fits of representative ab initio models, reconstructed using DAMMIF (dotted lines), the corresponding
shape models are shown in Fig. S4. The lower panels in A and C show the error-weighted residual differences between the model fits and the experimental data.
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by Kratky plots of the scattering data, i.e. uPART51C-V70C �
uPARwt � uPARK50C-V70C � uPARH47C-N259C. Yet one notable
difference was apparent. The deuterium uptake for residues
57– 66 differed significantly between the two uPAR variants
with introduced 7– 8 disulfide bonds, uPART51C-V70C exhib-
iting the far greater uptake thus resembling uPARwt (Fig.
6A). All isotope envelopes are unimodal at the shortest
exchange time (10 s) in the presence and absence of GFD
(Fig. S6), demonstrating that the amount of misfolded pro-
tein is negligible (48). This in turn signifies that the faster
exchange kinetics in uPART51C-V70C as compared with
uPARK50C-V70C reflects increased dynamics rather than irre-
versible protein misfolding (Fig. S6).

These differences in exchange rates of the 57– 66 fragment
among the tested uPAR disulfide conformers is almost erased in
the corresponding uPAR�GFD complexes (Fig. 6B). The com-
paction of uPAR by ligand binding thus reduces the macromo-
lecular interdomain flexibility as well as the intradomain flexi-
bility in DI, as monitored by SAXS and HDX-MS, respectively.
Deuterium uptake plots for other regions in uPAR are shown
in Fig. S5, but none of those show as prominent effects as
peptide(57– 66) (reporting on �IE and �IF).

Binding kinetics of uPA to the uPAR disulfide variants

To determine the kinetic rate constants for the uPA�uPAR
interactions by surface plasmon resonance, we developed a cap-

Figure 5. Assessing the flexibility of the various uPAR disulfide conformers. Dimensionless Kratky plots of the normalized scattering data for unoccupied
uPAR (A) and the corresponding complexes with ATF (B) reveal the relative flexibility of uPAR with different disulfide constraints. C and D show that ensemble
representations provide a good description of the relative flexibility of the unoccupied uPAR variants. Fits of optimized ensembles (dotted lines) determined by EOM
to the experimental data (circles) are shown (C). The size (Rg) distributions of optimized ensembles (solid lines) relative to a pool of random conformations (shaded area)
highlight the decreased flexibility of uPARH47C-N259C (panel D). Increases in the populations of the more compact conformations and changes in the width of the
size distributions, relative to that of uPARwt, are observed for each uPAR variant. The lower panel in C shows the error-weighted residual differences between
the ensemble fits and the experimental data.
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turing system, which enabled a homogenous presentation of
uPAR via an antibody-mediated noncovalent tether onto the
biosensor chip. To accomplish this, we chose ATN-615 as cap-
turing mAb for uPAR because its functional epitope is located
distant to the uPA-binding cavity (Fig. S7) and it forms a very
stable complex with uPAR (koff being 6 � 10�5 s�1, Fig. 7A). As
shown in Fig. 7 and Table 2, this experimental setup provided
kinetic data of high-end quality and it revealed a tight interac-
tion between uPARwt and ATF1–143 (KD is 20 pM with a kon of
1 � 107 M�1 s�1 and a koff of 2 � 10�4 s�1). As shown in Table
2, all the tested uPAR mutants had comparable association
rate constants (kon), but they differed significantly in disso-
ciation rate constants (koff). Notably, reintroduction of the
7– 8 consensus disulfide bond at the position defined by
sequence predictions led to a �40-fold decrease in the sta-
bility of the corresponding uPART51C-V70C�ATF complex as
reflected by the greater koff value (Fig. 7, B versus E). Impor-
tantly, mutating the positions chosen for the 7– 8 disulfide
bonds individually to alanine did not recapitulate this gross
impairment in stability (i.e. T51A and V70A). In contrast, reintro-
ducing the disulfide bond at the position judged to cause min-
imal structural perturbation led to a moderate 3.5-fold
increase in the koff for the corresponding uPARK50C-V70C�
ATF complex (Fig. 7D).

SMB binding to the various disulfide variants of uPAR

To assess the low-affinity binding between the SMB domain
of vitronectin and uPAR by surface plasmon resonance (SPR) in
solution, we used a slightly different format. In this setup, 2-fold
serial dilutions of SMB reached equilibrium binding with uPAR
or uPAR�ATF complexes in solution before they were captured
on the sensor surface by the anti-uPAR mAb R24 (Fig. 8A). The
virtue of this system is that it uses relatively high concentrations
of uPAR and ATF (100 and 150 nM), which makes certain that
ATF saturates uPAR despite some of the analyzed disulfide
mutants having impaired uPA binding, e.g. uPART51C-V70C. In
accordance with previous studies (5–7), uPARwt bound SMB

with a KD of 3 �M, whereas no binding of SMB to uPARR91D

could be detected (Fig. 7B).
As shown in Table 2 and Fig. 7, the introduction of the 7– 8

consensus disulfide bond in uPAR DI led to a minor decline in
the affinity of SMB for intact uPAR. With one exception, all
uPAR mutants exhibited an increased affinity for SMB upon
saturation with ATF. As reported previously (6), the affinity of
uPARH47C-N259C for SMB did not change upon ATF binding as
it already presents the higher affinity without bound ATF (Fig.
7C). The present SPR platform is thus capable of detecting the
allosteric effect of ATF saturation on the SMB binding to uPAR
in solution, albeit the magnitude of this effect is slightly less
pronounced compared with the previous solid-phase based
detection systems (6, 7). Nonetheless, this analysis clearly
showed that the allosteric impact of ATF on SMB binding
remain intact in both uPART51C-V70C and uPARK50C-V70C

showing that reintroduction of the 7– 8 consensus disulfide
bond in uPAR DI does not uncouple the beneficial effect of ATF
on SMB binding. In fact, binding of ATF managed to compen-
sate for the lower inherent affinity of uPART51C-V70C and
uPARK50C-V70C for SMB and restored an affinity comparable
with that of uPARwt�ATF (Fig. 7, B versus D and E).

Impact of deleting the 2–3 LU disulfide bond in uPAR DI

Finally, we explored the impact of deleting the 2–3 disulfide
bond in uPAR DI, the event that presumably led to neofunc-
tionalization of this LU domain in snake venom �-neurotoxins
(41). In all our functional tests, the uPARC6S-C12S mutant
behaved essentially as uPARwt despite having only three of
the five plesiotypic LU domain disulfides in DI. We found
that (i) DI associate with DIIDIII after chymotrypsin cleav-
age of the linker region in uPARC6S-C12S (Fig. 3F); (ii) the
affinity of uPARC6S-C12S for uPA and SMB is comparable
with those of uPARwt (Figs. 7F and 8F); and (iii) ATF-binding
stimulates SMB binding to the same extent as uPARwt (Fig. 8F).
These data indicate that deletion of the 2–3 disulfide bond in

Figure 6. Domain flexibility of loop 3 in DI of the various uPAR disulfide variants tested by HDX-MS. A shows the deuterium uptake plots for the peptic
peptide(57– 66) from unoccupied uPAR at 25 °C and pH 7.4. Shown are data from uPARwt (blue), uPARH47C-N259C (red), uPARK50C-V70C (green), and uPART51C-V70C

(orange). For comparison the data for uPARwt�GFD complexes are shown (light gray). This peptide display the larges differences observed between the different
uPAR variants. B shows the corresponding deuterium uptake plots for the GFD-bound uPAR. In this graph, the uptake of unoccupied uPARwt is shown (light
gray). The hatched black line represents the peptide derived from the fully deuterated protein. C highlights the position of the peptic peptide(57– 66) in intact
uPAR (blue) where it represents the �-hairpin formed by �-strands �IE and �IF (using PDB code 3BT1). Uptake values are shown with standard deviations.
Deuterium uptake plots for other peptic peptides are shown in Fig. S5.
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uPAR DI has no deleterious effect on the known ligand inter-
actions with uPAR.

Discussion

Loss and gain of disulfide-bonded cysteine residues (half-
cystines) occurs very infrequently during evolution. One possi-
ble reason for this low frequency is that missense mutations of
consensus half-cystines rarely survive selection and become
permanently integrated in the genomes due to the deleterious
effects of the reactive free thiol group in the partner half-cystine
(49). Interestingly, one study found that in 99% of the cases,
where missense mutations of half-cystines were maintained
during evolution, both pairs of half-cystines were in fact re-
placed in concert (50). Circumstantial evidence from human
genetics on LU domains align well with this proposition. One

example illustrating this relationship is the pathological out-
come of natural missense mutations in GPIHBP1. This protein
has a single LU domain and it plays an essential role in intravascu-
lar triglyceride hydrolysis by shuttling the lipoprotein lipase to the
capillary lumen (51). Individuals with a dysfunctional GPIHBP1
develop severe chylomicronemia. Notably, the majority of the mis-
sense mutations in human GPIHBP1 causing disease involves the
replacement of single half-cystines (43) or introduction of an
unpaired single cysteine (52). A similar pattern emerges for dis-
ease-causing mutations in the secreted single LU-domain protein
SLURP1, where the dysfunctional protein is associated with a
human skin disorder called mal de Meleda (53).

Notwithstanding the need for a concerted replacement of
both half-cystines to eliminate a given disulfide bond, such
rare events have in fact occurred in the evolution and diver-

Figure 7. Kinetics of uPAR�ATF interactions as assessed by surface plasmon resonance. A shows the principle in our capture protocol for assessing the rate
constants of an oriented uPAR�ATF interaction by three rounds of single cycle kinetics. Initially, amine-coupled rabbit anti-mouse IgG (RAM) captures the
high-affinity anti-uPAR mAb ATN-615 (31), which subsequently captures 50 nM uPAR yielding a binding stoichiometry of approximately two uPAR molecules
bound per ATN-615. Finally, injections of five serial 2-fold dilutions of ATF without intermitting regeneration yields the binding curves. The inset shows a
cartoon representation of the experimental setup. The double blank referenced sensorgrams are shown for uPARwt (B), uPARH47C-N259C (C), uPARK50C-V70C (D),
uPART51C-V70C (E), and uPARC6S-C12S (F). Different colors of the sensorgrams represents different ATF concentrations used for the single cycle setup: 0.03– 0.5 nM

(blue), 0.06 –1.0 nM (red), 0.12–2.0 nM (green), and 0.25– 4.0 nM (purple). The thin black line superimposed on each curve represents the experimental fit to a
simple bimolecular interaction and the corresponding residuals are in the bottom of the panels.
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Figure 8. Equilibrium binding of SMB to uPAR and uPAR�ATF complexes by surface plasmon resonance. A shows the principle in our capture protocol for
assessing the equilibrium dissociation constant (KD) between uPAR or uPAR�ATF complexes and SMB in solution. In brief, the amine-coupled anti-uPAR mAb
R24 captures 100 nM uPAR or 100 nM uPAR�ATF complexes in the presence of 2-fold serial dilutions of SMB (0.3–10 �M; replicates at 1.25 and 2.5 �M) in a
multicycle setup. The inset shows the section of the sensorgrams where the dose-dependent binding of SMB is recorded. The SMB-binding isotherms for uPAR
and uPAR�ATF complexes are shown for uPARwt and uPARR91D (B), uPARH47C-N259C (C), uPARK50C-V70C (D), uPART51C-V70C (E), and uPARC6S-C12S (F). Solid lines
represent SMB-binding isotherms for uPAR and dotted lines those for the corresponding uPAR�ATF complexes.

Table 2
Kinetics of uPAR�ATF interactions and KD of SMB binding
Analyses with single cycle protocols provided association (kon) and dissociation (koff) rate constants for the interactions between ATF in solution and different uPAR
mutants captured on mAb ATN-615. This setup uses 3– 4 rounds of single cycle injections each including five serial 2-fold dilutions of ATF1–135, which in combination
covers the concentration range of 0.03–2 nM. Fitting with non-linear regression to a simple bimolecular interaction model yielded the kinetic rate constants and the
stoichiometry was calculated as the molar ratio between captured ligand and calculated Rmax for the analyte. Fig. 7 shows the corresponding sensorgrams. Equilibrium
binding of SMB to uPAR and uPAR�ATF complexes were measured by SPR after capture to the mAb R24 as described in Fig. 8. Standard deviations (shown as �) refer to
parameters derived directly from the fitting procedures.

uPAR
uPAR�ATF uPAR�SMB uPAR�ATF�SMB

kon koff KD Stoichiometry KD KD

106 M�1s�1 10�4 s�1 nM �M

Wt 11 � 0.009 2.0 � 0.002 0.019 0.94 3.3 � 0.1 1.8 � 0.04
T51C–V70C 10 � 0.021 84 � 0.19 0.800 0.88 4.8 � 0.2 0.8 � 0.03
K50C–V70C 15 � 0.011 7.2 � 0.005 0.050 0.67 5.9 � 0.6 1.5 � 0.04
H47C–N259C 12 � 0.008 1.8 � 0.001 0.015 0.94 2.0 � 0.1 1.8 � 0.09
C6S–C12S 8.4 � 0.015 2.5 � 0.004 0.030 0.75 3.6 � 0.1 1.9 � 0.05
H47A 7.6 � 0.053 2.0 � 0.001 0.027 0.72 3.3 � 0.1 1.7 � 0.04
K50A 13 � 0.011 4.1 � 0.003 0.031 0.67 3.5 � 0.1 1.4 � 0.04
T51A 7.7 � 0.005 6.0 � 0.004 0.078 0.79 3.9 � 0.1 2.0 � 0.05
V70A 4.3 � 0.002 2.2 � 0.001 0.050 0.55 5.3 � 0.8 2.7 � 0.34
R91D 18 � 0.002 2.2 � 0.002 0.013 0.88 No binding No binding
D140A 11 � 0.009 17 � 0.015 0.170 0.67 2.8 � 0.1 1.4 � 0.03
N259A 8.1 � 0.006 1.3 � 0.001 0.016 0.79 2.9 � 0.1 1.7 � 0.05
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sification of LU domain proteins. The evolution of snake
venom �-neurotoxins clearly emphasizes this relationship,
where the deletion of the 2–3 disulfide bond allegedly coin-
cided with neofunctionalization and development of high
potency toward synapsid neuronal acetylcholine receptors
(41). One possible mechanism underlying this association is
that the deletion of this particular disulfide bond would relax
the LU domain scaffold, which allowed subsequent exploita-
tion of new binding interfaces.

In the present study, we found that elimination of the 2–3
disulfide bond in the first LU domain of uPAR did not have
notable functional consequences. Another report showed that
elimination of this disulfide bond in the single LU domain pro-
tein CD59 also had no impact on its complement regulatory
function (44). Based on these studies, it would thus appear that
the plesiotypic 2–3 disulfide bond is not essential for the overall
structural integrity of LU domain proteins, which would
explain why its deletion could cause functional diversification
in �-neurotoxins.

Paradoxically, the one plesiotypic LU domain disulfide bond
that actually is lost in uPAR is the 7– 8 disulfide in DI. In con-
trast to the 2–3 disulfide, this disulfide bond appears to be indis-
pensable for the correct folding and function of single LU
domain proteins in general (45, 51, 53, 54). Furthermore, the
deletion of this particular disulfide bond occurs in very few
proteins and exclusively in the first LU domain of proteins with
2 or more LU domains e.g. uPAR/PLAUR (31, 35, 40), C4.4A/
LYPD3 (55, 56), and Haldisin/LYPD5 (57). Bearing in mind that
flexibility between the individual LU domains in uPAR plays an
important role for ligand binding (5, 6, 38) it becomes highly
pertinent to ask the question: did deletion of this plesiotypic
7– 8 disulfide in uPAR DI facilitate the evolution of a high-
affinity ligand-binding cavity for uPA by enabling a dynamic
assembly of its three LU domains?

To address this question, we first needed to identify the puta-
tive positions of the two deleted half-cystines. Our comprehen-
sive alignments of more than 50 annotated orthologous uPAR
sequences from the class of Mammalia revealed an invariant
distance (5 amino acids) between the 6th and 7th cysteines in
the second and third LU domains of all orthologues (not shown,
but Fig. 1A, and Figs. S1 and S8 provide representative align-
ments). Moreover, the 5th and 7th positions after the 6th con-
sensus cysteine were invariantly a lysine and a glycosylated
asparagine in uPAR DI (equivalent to Lys50 and Asn52 in human
uPAR DI). In contrast, the 6th position, the assumed position of
the missing 7th consensus cysteine, varied between species (Fig.
S1). The 8th and 9th consensus cysteines were always neighbor-
ing residues in those uPAR domains, where all 5 plesiotypic
disulfide bonds were preserved. Importantly, uPAR-like ortho-
logues annotated from the class of Reptilia including lizards,
snakes, turtles, and crocodilians (Fig. S8) faithfully replicate
these properties. It is therefore beyond any reasonable doubt
that the correct position, from an evolutionary point view, for
the introduction of the missing 7– 8 disulfide bond in human
uPAR DI is indeed Thr51 and Val70.

The corresponding uPART51C-V70C mutant expressed well in
S2-cells and all cysteines were engaged in the expected disulfide
bonding in the purified protein. Nonetheless, our biochemical

and biophysical analysis on the purified uPART51C-V70C re-
vealed that the disulfide constrained DI behaves very different
to that of uPARwt. Among other features, we observed with size
exclusion chromatography that the introduction of the 7– 8
disulfide abrogated the interdomain interaction between DI
and DIIDIII in uPART51C-V70C (Fig. 3). Importantly, we show
that the penalty for introducing the missing disulfide in uPAR
DI is a �40-fold reduction in its affinity for uPA, which would
provide uPART51C-V70C with a KD that is at least 40-fold above
the plasma concentration of pro-uPA in humans (58). It would
therefore appear that the evolutionary deletion of the plesio-
typic 7– 8 disulfide bond in uPAR DI was essential for creating
a high-affinity binding site for uPA via a flexible assembly of all
three LU domains in uPAR. This proposition is well aligned
with studies on the co-evolution of uPA and uPAR (32, 59).
Based on crystal structures of human and murine uPAR�ATF
complexes and extensive mutagenesis (3, 31, 32, 60), the func-
tional hotspot residues in the �-hairpin of GFD for uPAR bind-
ing is well characterized in these species. The molecular basis
for the species selectivity in the uPAR�uPA interaction between
primates and nonprimate mammals is represented by the con-
certed replacement of the Asn223 Tyr23 and Trp303 Arg31

dyad in human and mouse uPA (32) (Fig. S9). Moreover, the
majority of the important residues in the uPAR-binding
motif of GFD from mammals are also conserved within the
class of Reptilia (Fig. S9A) and this class is also the earliest
class where a bona fide uPAR orthologue with three LU
domains can be traced (59). In this phylogenetic class, uPAR
DI has already lost its plesiotypic 7– 8 disulfide (Fig. S8). In
the class of Sarcopterygii, a uPAR-like protein with three LU
domains has recently been identified in the African lungfish
Protopterus (59). This protein is unique in the sense that it
retains the full signature of an ancient LU domain with all
five plesiotypic disulfide bonds present in all three domains
(Fig. S8). Examination of the �-hairpin of GFD in the corre-
sponding uPA orthologue reveals that the binding motif
known from Mammalia and Reptilia has not yet evolved
(Fig. S9A). It is therefore possible that this interaction is not
operational in species belonging to lobe-finned fishes, but
further functional studies on purified proteins is required
before a definitive conclusion can be made.

Evolution of the low-affinity interaction between uPAR
and the SMB domain of vitronectin follows a slightly differ-
ent path. Although the hotspot residues in SMB for the vit-
ronectin interaction with human uPAR is highly conserved
all the way to Sarcopterygii (Fig. S10A), the hotspot residue
in uPAR (i.e. Arg91 in the linker region between DI and DII)
is only conserved within Mammalia (Fig. S10B). It is there-
fore likely that the co-evolution, which shaped the uPAR-
binding site in SMB, originally was driven by the interaction
between vitronectin and the cognate uPA-inhibitor plasmin-
ogen activator inhibitor type 1, in which the hotspot residue
for SMB-binding (i.e. Arg101) is conserved in lobe-finned
fishes, bony fishes, and cartilaginous fishes (61). Later in
evolution, the class of Mammalia presumably developed the
uPAR�vitronectin interaction through convergent evolution.
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Experimental procedures

Chemicals and purified proteins

Recombinant human uPAR (residues 1–283) and a panel of
mutants thereof were expressed and secreted by Drosophila
melanogaster S2 cells and purified from the culture superna-
tants by affinity chromatography (62). The SMB domain of
human vitronectin (residues 1– 48) with a C-terminal His6
purification tag was expressed by Pichia pastoris and purified
and characterized as described (63). Human pro-uPA1– 411 (as
the catalytic inactive S356A mutant) and its receptor binding
N-terminal fragment ATF1–143 were produced by D. melano-
gaster S2 cells and purified by affinity chromatography (60).
The growth factor-like domain of uPA, GFD (residues 1– 48),
was a kind gift from Dr. S. Rosenberg. Mouse monoclonal anti-
human uPAR antibodies were produced either locally (R24) (5)
or was a kind gift from Dr. A. Mazar (ATN-615) (31). Recom-
binant peptide-N4-(acetyl-�-glucosaminyl)-asparagine ami-
dase (PNGase F; E.C. 3.5.1.52) was from Roche Applied Science
(25 units/�g) and �-chrymotrypsin was from Worthington.

Generation of uPAR1– 87 by limited proteolysis with
chymotrypsin

The N-terminal LU domain of human uPAR (DI, residues
1– 87) was excised by limited proteolysis with chymotrypsin
using conditions that preferentially led to hydrolysis of the
Tyr87–Ser88 peptide bond in uPAR. In brief, 45 �g of intact
uPAR was incubated with 9 ng of chymotrypsin (E:S of 1:5000)
in 54 �l of PBS, pH 7.4, for 120 min at 25 °C and the released
uPAR DI1– 87 was isolated by size exclusion chromatography
with a SuperdexTM 75 HR10/300 columnTM (GE Healthcare)
operated at 0.5 ml/min in PBS (40). Time course experiments
were conducted at higher chymotrypsin ratios (E:S of 1:750) for
up to 24 h, which led to an additional cleavage at Tyr57–Arg58 in
uPARwt.

Deglycosylation of intact uPAR under native conditions

Purified uPAR variants (10 �g in 10 �l of PBS) were incu-
bated for 1 h at 25 °C with 1 unit of PNGase F. To discriminate
between effects on DI and DIIDIII, the PNGase F-treated sam-
ples were further incubated for 1 h with 2 ng of chymotrypsin
(1:5000 (w/w)) to cleave the Tyr87–Ser88 peptide bond in the
linker region. Heating at 95 °C in SDS-PAGE sample buffer
containing 20 mM DTT stopped the reaction. After cooling and
addition of 50 mM iodoacetamide, samples were analyzed by
SDS-PAGE and visualized by Coomassie G250 staining.

Surface plasmon resonance

We determined the binding kinetics for the uPA�uPAR inter-
actions with SPR measurements on a Biacore T200TM system
(GE Healthcare). To accomplish this, we immobilized a poly-
clonal rabbit anti-mouse immunoglobulin antibody (GE
Healthcare) as the first capture layer (30 �g/ml in 10 mM

sodium acetate, pH 5.0) on a CM5 sensor chip using N-hy-
droxysuccinimide and N-ethyl-N-(3-(diethylamino)propyl)-
carbodiimide. This yielded a surface density of 1100 resonance
units (RU), which corresponds to 7.3 fmol of mAb/mm2

(assuming one RU 	 1 pg/mm2). Injection of 1 M ethanolamine

inactivated excess NHS-esters. To prepare the second capture
layer, we injected 50 nM of a high-affinity mouse monoclonal
anti-uPAR mAb (ATN-615) for 350 s at 20 �l/min in the active
flow cell only, which led to 	0.8 fmol of mAb/mm2 (120 RU).
The last capture step involved a 300-s injection of 50 nM uPAR
at 20 �l/min in both flow cells, which led to a capture level of
1.6 –2.0 uPAR molecules bound per ATN-615 in the active flow
cell. Kinetic rate constants for the various uPA�uPAR interac-
tions were determined with single cycle protocols by which five
serial 2-fold dilutions of the interaction partner (ATF) were
injected for 200 s without intervening regeneration and fol-
lowed by a longer dissociation phase (1,000 –3,000 s dependent
on the dissociation rate constant koff). These real-time interac-
tions were measured at 50 �l/min in 10 mM HEPES, 150 mM

NaCl, 3 mM EDTA, and 0.05% (v/v) surfactant P-20 at pH 7.4 at
20 °C. Three consecutive injections of 10 mM glycine/HCl, pH
1.7, at the end of each single cycle regenerated the chip.

Fitting of the double blank referenced data by nonlinear
regression to a bimolecular interaction model, assuming pseu-
do-first order reaction conditions, yielded the association (kon)
and dissociation (koff) rate constants, the KD (koff/kon), as well as
the binding capacity (Rmax). We used the evaluation software
supplied with the instrument for global fitting (BiacoreT200
EvaluationTM 3.0).

Our experimental protocol for measuring equilibrium bind-
ing between SMB and uPAR or uPAR�ATF complexes relies
entirely on steady state conditions in solution between 100 nM

uPAR � 150 nM ATF and serial 2-fold dilutions of SMB (0.3–10
�M). Binding of SMB was monitored by the mass increase of
uPAR or uPAR�ATF complexes during capture by the anti-
uPAR mAb R24 as a function of the added SMB concentration
(37). We used amine chemistry to immobilize R24 directly on a
CM5 chip at a density of 651 RU (4.3 fmol of mAb/mm2). We
designed this atypical binding protocol to minimize the effects
of the vastly different inherent stabilities of the bimolecular
uPARwt�ATF and uPART51C-V70C�ATF complexes (see Table 2).
Using concentrations of uPAR and ATF that were at least 100-
fold above the highest measured KD we made sure that uPAR
was saturated with ATF during the steady state binding to SMB
in solution.

Hydrogen-deuterium exchange

Purified uPAR was diluted in PBS to a final concentration of
30 �M in the absence or presence of 2-fold molar excess of
GFD1– 48, and subsequent incubation for 15 min at 25 °C
secured complete complex formation. To initiate isotopic
exchange, samples were diluted 10-fold in PBS exchange D2O
buffer (10 mM Na2HPO4, 150 mM NaCl in D2O, pHread 7.2),
which resulted in 90% D2O (v/v) in the final labeling solutions.
Aliquots of 60 pmol of uPAR were withdrawn after 10, 100, and
1000 s of incubation at 25 °C. We used acidification and low-
ered the temperature to efficiently prevent further exchange by
adding 1 volume of ice-cold quench buffer (0.1 M Na2HPO4, 0.8
M tris-(2-carboxyethyl)phosphine, 2 M urea in H2O, pH 2.5) to
the withdrawn sample and kept it on ice for 3 min to allow
reduction of disulfide bonds. Subsequently, the quenched sam-
ples were snap frozen in liquid nitrogen and stored at �80 °C
until analysis. All samples were labeled in triplicates except
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uPART51C-V70C, which was measured in duplicates. To prepare
an undeuterated control, the samples were prepared as de-
scribed above except we replaced the PBS exchange D2O buffer
with the corresponding protiated solvent. We prepared a full-
deuterium control by incubating the sample in the exchange
buffer for 72 h at 37 °C before quenching.

Determining deuterium uptake by UPLC-ESI-MS

Quenched and reduced uPAR samples (60 pmol) were
thawed and immediately injected into a cooled (0 °C) nanoAC-
QUITY UPLC reversed-phased chromatographic system
equipped with HDX technology (Waters, Milford, MA), using
an ice-cold syringe to minimize back-exchange. The sample
entered a 100-�l injection loop prior to the on-line digestion of
the protein, which was carried out by a 2.0 � 20-mm column
(IDEX Upchurch Analytical Guard Column, Oak Harbor, WA)
packed with agarose-immobilized pepsin (Thermo Scientific
Pierce, Rockford, IL), located in a compartment with a temper-
ature of 20 °C. The on-line digestion occurred at a flow rate of
300 �l/min in 0.23% (v/v) formic acid in H2O and the generated
peptic peptides were trapped on a short guard column and
desalted for 3 min (ACQUITY UPLC BEH C18 VanGuard Pre-
Column, 1.7 �m, 2.1 � 5 mm, Waters). Subsequently, the pep-
tides were separated at a flow rate of 40 �l/min on a 1.0 �
50-mm analytical column (ACQUITY UPLC BEH C18, 1.7 �m,
1.0 � 50 mm, Waters) with a 12-min linear gradient from
5–50% (v/v) acetonitrile containing 0.23% (v/v) formic acid. In
some experiments, we used a longer analytical column (100
mm).

Eluted peptides were introduced into a quadrupole TOF
mass spectrometer (Synapt G2, Waters Corp.) by electrospray
ionization. Acquired MS spectra was lock-mass corrected
against leucine enkephalin and calibrated against sodium
iodide.

Extensive cleaning reduced carryover between runs to less
than 5%. In brief, we washed the injection loop with 200 �l of
50% (v/v) MeOH in H2O containing 0.23% (v/v) formic acid,
followed by 200 �l of 0.23% (v/v) formic acid followed by a blank
gradient.

The peptic peptides from uPAR were identified by collision-
induced dissociation with data independent (MSE) acquisition
mode. Protein Lynx Global Server 3.0 (PLGS) software
(Waters) searched and identified the peptic peptides from
uPAR. Data processing with DynamX 3.0 (Waters) determined
the deuterium content in each peptide.

Small-angle X-ray scattering

Synchrotron radiation X-ray scattering data were collected
on the EMBL P12 beamline of the storage ring PETRA III
(DESY, Hamburg) and EMBL X33 beamline of the storage ring
DORIS (DESY, Hamburg) (Tables S1–S4), using PILATUS 2M
and 1M pixel detectors (DECTRIS, Switzerland), respectively.
Batch experiments of uPAR and uPAR�ATF complexes (puri-
fied by size exclusion chromatography) were measured in 20
mM PBS, 5% glycerol, pH 7.4, � 50 mM NaSO4, while flowing
through a temperature controlled capillary (P12: 1.2-mm inner
diameter, X33: 1.7-mm inner diameter) at 10 °C. Twenty
frames of 0.05-s exposure time (P12) or four frames of 30-s

exposure time (X33) were collected. The sample-to-detector
distance was 2.7 m (P12) and 3.1 m (X33), covering a range of
momentum transfer 0.002 Å�1 � s � 0.5 Å�1 and 0.008 Å�1 �
s � 0.6 Å�1 (s � 4�sin	/
, where 2	 is the scattering angle, and

 � 1.24 Å is the X-ray wavelength), respectively. Based on
comparison of successive frames, no detectable radiation dam-
age was observed. Data from the detector were normalized to
the transmitted beam intensity, averaged, placed on absolute
scale relative to water, and the scattering of buffer solutions
subtracted. All data manipulations were performed using
PRIMUSqt and the ATSAS software package (64). The forward
scattering I(0) and radius of gyration, Rg were determined from
Guinier analysis (65) assuming that at very small angles (s �
1.3/Rg) the intensity is represented as I(s) � I(0)exp(�(sRg)2/
3)). These parameters were also estimated from the full scatter-
ing curves using the indirect Fourier transform method imple-
mented in the program GNOM (66), along with the distance
distribution function p(r) and the maximum particle dimen-
sions Dmax. Molecular masses of solutes were estimated from
I(0) by computation of partial specific volume and the contrast
between the glycosylated protein sequence and the chemical
components of the solution using the MULCH server (http://
smb-research.smb.usyd.edu.au/NCVWeb/)3 (67). Computa-
tion of theoretical scattering intensities was performed using
the program CRYSOL (68).

Ab initio shape determination

Low resolution shapes were reconstructed from SAXS data
using the programs DAMMIF (69), which represents the mac-
romolecule as a densely packed interconnected configuration
of beads or chain-like ensemble of dummy residues, respec-
tively, that best fits the experimental data Iexp(s) by minimizing
the discrepancy,

�2 �
1

N  1�
j

� Iexp
sj�  cIcalc
sj�

�
sj�
�2

(Eq. 1)

where N is the number of experimental points, c is a scaling
factor, and Icalc(sj) and �(sj) are the calculated intensity and the
experimental error at the momentum transfer sj, respectively.
Multiple modeling runs were conducted to verify the stability of
the solution, and to establish the most typical 3D recon-
structions according to a spatial discrepancy measure using
DAMAVER (70).

Ensemble modeling

Crystal structures of uPAR and uPAR�ATF complex (PDB
IDs 2FD6, 3U74, and 3U73) were used as template for flexible
modeling of the uPAR domain structures in solution. Glycosyl-
ation was introduced into the models using the GLYCOSYLA-
TION routine of ATSAS (64). The program EOM (47) was used
to generate a pool of 10,000 uPAR conformations with flexible
linkers defined between the three LU domains. A generic algo-
rithm was then employed to select subsets of conformers from
the pool that best fit the experimental scattering data for each

3 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.
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construct. The flexibility metric, Rflex, was determined for each
ensemble as described previously (47), where Rflex � 100% indi-
cates maximum flexibility/uncertainty. SAXS data has been
deposited at the SASBDB (www.sasbdb.org)3 with accession
codes: SASDAT4, SASDAX4, SASDAU4, SASDF82, SASDF92,
SASDFA2, SASDFB2, and SASDFC2.
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