30 research outputs found
Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble
The need for better understanding of the low-frequency unsteadiness observed in shock wave/turbulent boundary layer interactions has been driving research in this area for several decades. We present here a large-eddy simulation investigation of the interaction between an impinging oblique shock and a Mach 2.3 turbulent boundary layer. Contrary to past large-eddy simulation investigations on shock/turbulent boundary layer interactions, we have used an inflow technique which does not introduce any energetically significant low frequencies into the domain, hence avoiding possible interference with the shock/boundary layer interaction system. The large-eddy simulation has been run for much longer times than previous computational studies making a Fourier analysis of the low frequency possible. The broadband and energetic low-frequency component found in the interaction is in excellent agreement with the experimental findings. Furthermore, a linear stability analysis of the mean flow was performed and a stationary unstable global mode was found. The long-run large-eddy simulation data were analyzed and a phase change in the wall pressure fluctuations was related to the global-mode structure, leading to a possible driving mechanism for the observed low-frequency motions
Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses
To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely
Aggressive behaviour affects selection on morphology by influencing settlement patterns in a passerine bird
The importance of behaviours as instigators or inhibitors of evolutionary change remains largely unresolved and this is in part because there are very few empirical examples of how behaviours affect evolutionary processes. By determining the environment of breeding, aggressive interactions over territories have the potential to strongly impact selection pressures experienced by individuals. Western bluebirds (Sialia mexicana) provide a unique opportunity to investigate the evolutionary importance of aggression, since their highly variable breeding habitat favours distinct foraging techniques and they also compete aggressively for nest boxes, a resource that is easy to manipulate. Here, I show experimentally that more aggressive males compete more effectively for territories with a high density of nest boxes and, as a consequence, aggressive and non-aggressive males are sorted into distinct breeding habitats that differ in the strength of selection on morphological traits. Specifically, males with longer tails and tarsi were favoured in open habitats where high agility is required to forage efficiently, whereas in forested habitats, where agility is less important, selection was weak. These results show that aggression can affect selection on a local scale by determining individual settlement patterns. More generally, because territorial interactions are important across a wide variety of taxa, these results suggest that aggressive behaviour has the potential to impact the evolutionary trajectory of many animal populations
On the Complexity Monotonicity Thesis for Environment, Behaviour and Cognition
Abstract. Development of more complex cognitive systems during evolution is sometimes viewed in relation to environmental complexity. In more detail, growth of complexity during evolution can be considered for the dynamics of externally observable behaviour of agents, for their internal cognitive systems, and for the environment. This paper explores temporal complexity for these three aspects, and their mutual dependencies. A number of example scenarios have been formalised in a declarative temporal language, and the complexity of the structure of the different formalisations was measured. Thus, some empirical evidence was provided for the thesis that for more complex environments, more complex behaviour and more complex mental capabilities are needed.