18 research outputs found

    Bacterial sepsis triggers an antiviral response that causes translation shutdown

    Get PDF
    In response to viral pathogens, the host upregulates antiviral genes that suppress translation of viral mRNAs. However, induction of such antiviral responses may not be exclusive to viruses, as the pathways lie at the intersection of broad inflammatory networks that can also be induced by bacterial pathogens. Using a model of Gram-negative sepsis, we show that propagation of kidney damage initiated by a bacterial origin ultimately involves antiviral responses that result in host translation shutdown. We determined that activation of the eukaryotic translation initiation factor 2-α kinase 2/eukaryotic translation initiation factor 2α (Eif2ak2/Eif2α) axis is the key mediator of translation initiation block in late-phase sepsis. Reversal of this axis mitigated kidney injury. Furthermore, temporal profiling of the kidney translatome revealed that multiple genes involved in formation of the initiation complex were translationally altered during bacterial sepsis. Collectively, our findings imply that translation shutdown is indifferent to the specific initiating pathogen and is an important determinant of tissue injury in sepsis

    Inhibition of Toll-Like Receptor 4 Signaling Mitigates Microvascular Loss but Not Fibrosis in a Model of Ischemic Acute Kidney Injury

    Get PDF
    The development of chronic kidney disease (CKD) following an episode of acute kidney injury (AKI) is an increasingly recognized clinical problem. Inhibition of toll-like receptor 4 (TLR4) protects renal function in animal models of AKI and has become a viable therapeutic strategy in AKI. However, the impact of TLR4 inhibition on the chronic sequelae of AKI is unknown. Consequently, we examined the chronic effects of TLR4 inhibition in a model of ischemic AKI. Mice with a TLR4-deletion on a C57BL/6 background and wild-type (WT) background control mice (C57BL/6) were subjected to bilateral renal artery clamping for 19 min and reperfusion for up to 6 weeks. Despite the acute protective effect of TLR4 inhibition on renal function (serum creatinine 1.6 ± 0.4 mg/dL TLR4-deletion vs. 2.8 ± 0.3 mg/dL·WT) and rates of tubular apoptosis following ischemic AKI, we found no difference in neutrophil or macrophage infiltration. Furthermore, we observed significant protection from microvascular rarefaction at six weeks following injury with TLR4-deletion, but this did not alter development of fibrosis. In conclusion, we validate the acute protective effect of TLR4 signal inhibition in AKI but demonstrate that this protective effect does not mitigate the sequential fibrogenic response in this model of ischemic AKI

    The macrophage mediates the renoprotective effects of endotoxin preconditioning

    No full text
    Preconditioning is a preventative approach, whereby minimized insults generate protection against subsequent larger exposures to the same or even different insults. In immune cells, endotoxin preconditioning downregulates the inflammatory response and yet, preserves the ability to contain infections. However, the protective mechanisms of preconditioning at the tissue level in organs such as the kidney remain poorly understood. Here, we show that endotoxin preconditioning confers renal epithelial protection in various models of sepsis in vivo. We also tested the hypothesis that this protection results from direct interactions between the preconditioning dose of endotoxin and the renal tubules. This hypothesis is on the basis of our previous findings that endotoxin toxicity to nonpreconditioned renal tubules was direct and independent of immune cells. Notably, we found that tubular protection after preconditioning has an absolute requirement for CD14-expressing myeloid cells and particularly, macrophages. Additionally, an intact macrophage CD14-TRIF signaling pathway was essential for tubular protection. The preconditioned state was characterized by increased macrophage number and trafficking within the kidney as well as clustering of macrophages around S1 proximal tubules. These macrophages exhibited increased M2 polarization and upregulation of redox and iron-handling molecules. In renal tubules, preconditioning prevented peroxisomal damage and abolished oxidative stress and injury to S2 and S3 tubules. In summary, these data suggest that macrophages are essential mediators of endotoxin preconditioning and required for renal tissue protection. Preconditioning is, therefore, an attractive model to investigate novel protective pathways for the prevention and treatment of sepsis

    p53 regulates renal expression of HIF-1α and pVHL under physiological conditions and after ischemia-reperfusion injury

    Get PDF
    Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI) and is characterized by widespread tubular and microvascular damage. The tumor suppressor p53 is upregulated after IRI and contributes to renal injury in part by promoting apoptosis. Acute, short-term inhibition of p53 with pifithrin-α conveys significant protection after IRI. The hypoxia-inducible factor-1 (HIF-1) pathway is also activated after IRI and has opposing effects to those promoted by p53. The balance between the HIF-1 and p53 responses can determine the outcome of IRI. In this manuscript, we investigate whether p53 regulates the HIF-1 pathway in a rodent model of IRI. HIF-1α is principally expressed in the collecting tubules (CT) and thick ascending limbs (TAL) under physiological conditions. However, inhibition of p53 with pifithrin-α increases the faint expression of HIF-1α in proximal tubules (PT) under physiological conditions. Twenty-four hours after IRI, HIF-1α expression is decreased in both CT and TAL. HIF-1α expression in the PT is not significantly altered after IRI. Acute inhibition of p53 significantly increases HIF-1α expression in the PT after IRI. Additionally, pifithrin-α prevents the IRI-induced decrease in HIF-1α in the CT and TAL. Parallel changes are observed in the HIF-1α transcriptive target, carbonic anhydrase-9. Finally, inhibition of p53 prevents the dramatic changes in Von Hippel-Lindau protein morphology and expression after IRI. We conclude that activation of p53 after IRI mitigates the concomitant activation of the protective HIF-1 pathway. Modulating the interactions between the p53 and HIF-1 pathway can provide novel options in the treatment of AKI

    p53 regulates renal expression of HIF-1α and pVHL under physiological conditions and after ischemia-reperfusion injury

    No full text
    Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI) and is characterized by widespread tubular and microvascular damage. The tumor suppressor p53 is upregulated after IRI and contributes to renal injury in part by promoting apoptosis. Acute, short-term inhibition of p53 with pifithrin-α conveys significant protection after IRI. The hypoxia-inducible factor-1 (HIF-1) pathway is also activated after IRI and has opposing effects to those promoted by p53. The balance between the HIF-1 and p53 responses can determine the outcome of IRI. In this manuscript, we investigate whether p53 regulates the HIF-1 pathway in a rodent model of IRI. HIF-1α is principally expressed in the collecting tubules (CT) and thick ascending limbs (TAL) under physiological conditions. However, inhibition of p53 with pifithrin-α increases the faint expression of HIF-1α in proximal tubules (PT) under physiological conditions. Twenty-four hours after IRI, HIF-1α expression is decreased in both CT and TAL. HIF-1α expression in the PT is not significantly altered after IRI. Acute inhibition of p53 significantly increases HIF-1α expression in the PT after IRI. Additionally, pifithrin-α prevents the IRI-induced decrease in HIF-1α in the CT and TAL. Parallel changes are observed in the HIF-1α transcriptive target, carbonic anhydrase-9. Finally, inhibition of p53 prevents the dramatic changes in Von Hippel-Lindau protein morphology and expression after IRI. We conclude that activation of p53 after IRI mitigates the concomitant activation of the protective HIF-1 pathway. Modulating the interactions between the p53 and HIF-1 pathway can provide novel options in the treatment of AKI

    Endotoxin Preconditioning Reprograms S1 Tubules and Macrophages to Protect the Kidney

    No full text
    Preconditioning with a low dose of endotoxin confers unparalleled protection against otherwise lethal models of sepsis. The mechanisms of preconditioning have been investigated extensively in isolated immune cells such as macrophages. However, the role of tissue in mediating the protective response generated by preconditioning remains unknown. Here, using the kidney as a model organ, we investigated cell type-specific responses to preconditioning. Compared with preadministration of vehicle, endotoxin preconditioning in the cecal ligation and puncture mouse model of sepsis led to significantly enhanced survival and reduced bacterial load in several organs. Furthermore, endotoxin preconditioning reduced serum levels of proinflammatory cytokines, upregulated molecular pathways involved in phagocytosis, and prevented the renal function decline and injury induced in mice by a toxic dose of endotoxin. The protective phenotype involved the clustering of macrophages around S1 segments of proximal tubules, and full renal protection required both macrophages and renal tubular cells. Using unbiased S1 transcriptomic and tissue metabolomic approaches, we identified multiple protective molecules that were operative in preconditioned animals, including molecules involved in antibacterial defense, redox balance, and tissue healing. We conclude that preconditioning reprograms macrophages and tubules to generate a protective environment, in which tissue health is preserved and immunity is controlled yet effective. Endotoxin preconditioning can thus be used as a discovery platform, and understanding the role and participation of both tissue and macrophages will help refine targeted therapies for sepsis
    corecore