41 research outputs found

    Hereditary xerocytosis - spectrum and clinical manifestations of variants in the PIEZO1 gene, including co-occurrence with a novel β-globin mutation

    Get PDF
    Hereditary xerocytosis (HX) is a rare, autosomal dominant congenital hemolytic anemia (CHA) characterized by erythrocyte dehydration with presentation of various degrees of hemolytic anemia. HX is often misdiagnosed as hereditary spherocytosis or other CHA. Here we report three cases of suspected HX and one case of HX associated with β-thalassemia. Sanger method was used for sequencing cDNA of the PIEZO1 gene. Variants were evaluated for potential pathogenicity by MutationTaster, PROVEAN, PolyPhen-2 and M-CAP software, and by molecular modeling. Four different variants in the PIEZO1 gene were found, including three substitutions (p.D669H, p.D1566G, p.T1732 M) and one deletion (p.745delQ). In addition, in the patient with the p.T1732 M variant we detected a 12-nucleotide deletion in the β-globin gene leading to a deletion of amino acids 62AHGK65. The joint presence of mutations in two different genes connected with erythrocytes markedly aggravated the presentation of the disease. Bioinformatic analysis and molecular modeling strongly indicated likely deleterious effects of all four PIEZO1 variants, but co-segregation analysis showed that the p.D1566G substitution is in fact non-pathogenic. Identification of causative mutations should improve the diagnosis and management of HX and provide a new insight into the molecular basis of this complex red blood cell abnormality

    The lactococcal abortive infection protein AbiP is membrane-anchored and binds nucleic acids

    Get PDF
    AbstractAbiP, a lactococcal abortive phage infection system, has previously been shown to arrest phage bIL66M1 DNA replication around 10 min after infection and to inhibit the switch off of phage early transcripts. We report here the functional characterization and implication in the abortive infection phenotype of two domains identified in the AbiP sequence. We show that AbiP is a protein anchored to the membrane by an N-terminal membrane-spanning domain. Our results further suggest that membrane localization may be required for the anti-phage activity of AbiP. The remainder of the protein, which contains a putative nucleic acid binding domain, is shown to be located on the cytosolic side. Purified AbiP is shown to bind nucleic acids with an approximately 10-fold preference for RNA relative to ssDNA. AbiP interaction with both ssDNA and RNA molecules occurs in a sequence-independent manner. We have analyzed the effect of substitutions of aromatic and basic residues on the surface of the putative binding fold. In vitro and in vivo studies of these AbiP derivatives indicate that the previously reported effects on phage development might be dependent on the nucleic acid binding activity displayed by the membrane-bound protein

    Molecular analysis of three novel G6PD variants : G6PD Pedoplis-Ckaro, G6PD Piotrkow and G6PD Krakow

    Get PDF
    We present three novel mutations in the G6PD gene and discuss the changes they cause in the 3-dimensional structure of the enzyme: 573C→G substitution that predicts Phe to Leu at position 191 in the C-terminus of helix αe, 851T→C mutation which results in the substitution 284Val→→Ala in the β+α domain close to the C-terminal part of helix αj, and 1175T→C substitution that predicts Ile to Thr change at position 392

    Two novel C-terminal frameshift mutations in the β-globin gene lead to rapid mRNA decay

    Get PDF
    BACKGROUND: The thalassemia syndromes are classified according to the globin chain or chains whose production is affected. β-thalassemias are caused by point mutations or, more rarely, deletions or insertions of a few nucleotides in the β-globin gene or its immediate flanking sequences. These mutations interfere with the gene function either at the transcriptional, translational or posttranslational level. METHODS: Two cases of Polish patients with hereditary hemolytic anemia suspected of thalassemia were studied. DNA sequencing and mRNA quantification were performed. Stable human cell lines which express wild-type HBB and mutated versions were used to verify that detected mutation are responsible for mRNA degradation. RESULTS: We identified two different frameshift mutations positioned in the third exon of HBB. Both patients harboring these mutations present the clinical phenotype of thalassemia intermedia and showed dominant pattern of inheritance. In both cases the mutations do not generate premature stop codon. Instead, slightly longer protein with unnatural C-terminus could be produced. Interestingly, although detected mutations are not expected to induce NMD, the mutant version of mRNA is not detectable. Restoring of the open reading frame brought back the RNA to that of the wild-type level. CONCLUSION: Our results show that a lack of natural stop codon due to the frameshift in exon 3 of β-globin gene causes rapid degradation of its mRNA and indicate existence of novel surveillance pathway

    Genetic engineering and molecular characterization of yeast strain expressing hybrid human-yeast squalene synthase as a tool for anti-cholesterol drug assessment

    Get PDF
    AIMS: The main objective of the study is molecular and biological characterization of the human-yeast hybrid squalene synthase (SQS), as a promising target for treatment of hypercholesterolaemia. METHODS AND RESULTS: The human-yeast hybrid SQS, with 67% amino acids, including the catalytic site derived from human enzyme, was expressed in Saccharomyces cerevisiae strain deleted of its own SQS gene. The constructed strain has a decreased level of sterols compared to the control strain. The mevalonate pathway and sterol biosynthesis genes are induced and the level of triacylglycerols is increased. Treatment of the strain with rosuvastatin or zaragozic acid, two mevalonate pathway inhibitors, decreased the amounts of squalene, lanosterol and ergosterol, and up-regulated expression of several genes encoding enzymes responsible for biosynthesis of ergosterol precursors. Conversely, expression of the majority genes implicated in the biosynthesis of other mevalonate pathway end products, ubiquinone and dolichol, was down-regulated. CONCLUSIONS: The S. cerevisiae strain constructed in this study enables to investigate the physiological and molecular effects of inhibitors on cell functioning. SIGNIFICANCE AND IMPACT OF THE STUDY: The yeast strain expressing hybrid SQS with the catalytic core of human enzyme is a convenient tool for efficient screening for novel inhibitors of cholesterol-lowering properties

    A distinct single-stranded DNA-binding protein encoded by the Lactococcus lactis bacteriophage bIL67

    Get PDF
    Single-stranded binding proteins (SSBs) are found to participate in various processes of DNA metabolism in all known organisms. We describe here a SSB protein encoded by the Lactococcus lactis phage bIL67 orf14 gene. It is the first noted attempt at characterizing a SSB protein from a lactococcal phage. The purified Orf14bIL67 binds unspecifically to ssDNA with the same high affinity as the canonical Bacillus subtilis SSB. Electrophoretic mobility-shift assays performed with mutagenized Orf14bIL67 protein derivatives suggest that ssDNA-binding occurs via a putative OB-fold structure predicted by three-dimensional modeling. The native Orf14bIL67 forms homotetramers as determined by gel filtration studies. These results allow distinguishing the first lactococcal phage protein with single-strand binding affinity, which defines a novel cluster of phage SSBs proteins. The possible role of Orf14bIL67 in phage multiplication cycle is also discussed

    Investigating the Effects of Statins on Cellular Lipid Metabolism Using a Yeast Expression System

    Get PDF
    In humans, defects in lipid metabolism are associated with a number of severe diseases such as atherosclerosis, obesity and type II diabetes. Hypercholesterolemia is a primary risk factor for coronary artery disease, the major cause of premature deaths in developed countries. Statins are inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the key enzyme of the sterol synthesis pathway. Since yeast Saccharomyces cerevisiae harbours many counterparts of mammalian enzymes involved in lipid-synthesizing pathways, conclusions drawn from research with this single cell eukaryotic organism can be readily applied to higher eukaryotes. Using a yeast strain with deletions of both HMG1 and HMG2 genes (i.e. completely devoid of HMGR activity) with introduced wild-type or mutant form of human HMGR (hHMGR) gene we investigated the effects of statins on the lipid metabolism of the cell. The relative quantification of mRNA demonstrated a different effect of simvastatin on the expression of the wild-type and mutated hHMGR gene. GC/MS analyses showed a significant decrease of sterols and enhanced conversion of squalene and sterol precursors into ergosterol. This was accompanied by the mobilization of ergosterol precursors localized in lipid particles in the form of steryl esters visualized by confocal microscopy. Changes in the level of ergosterol and its precursors in cells treated with simvastatin depend on the mutation in the hHMGR gene. HPLC/MS analyses indicated a reduced level of phospholipids not connected with the mevalonic acid pathway. We detected two significant phenomena. First, cells treated with simvastatin develop an adaptive response compensating the lower activity of HMGR. This includes enhanced conversion of sterol precursors into ergosterol, mobilization of steryl esters and increased expression of the hHMGR gene. Second, statins cause a substantial drop in the level of glycerophospholipids

    Nuclear Import and Export Signals of Human Cohesins SA1/STAG1 and SA2/STAG2 Expressed in Saccharomyces cerevisiae

    Get PDF
    Abstract Background: Human SA/STAG proteins, homologues of the yeast Irr1/Scc3 cohesin, are the least studied constituents of the sister chromatid cohesion complex crucial for proper chromosome segregation. The two SA paralogues, SA1 and SA2, show some specificity towards the chromosome region they stabilize, and SA2, but not SA1, has been shown to participate in transcriptional regulation as well. The molecular basis of this functional divergence is unknown. Methodology/Principal Findings: In silico analysis indicates numerous putative nuclear localization (NLS) and export (NES) signals in the SA proteins, suggesting the possibility of their nucleocytoplasmic shuttling. We studied the functionality of those putative signals by expressing fluorescently tagged SA1 and SA2 in the yeast Saccharomyces cerevisiae. Only the Nterminal NLS turned out to be functional in SA1. In contrast, the SA2 protein has at least two functional NLS and also two functional NES. Depending on the balance between these opposing signals, SA2 resides in the nucleus or is distributed throughout the cell. Validation of the above conclusions in HeLa cells confirmed that the same N-terminal NLS of SA1 is functional in those cells. In contrast, in SA2 the principal NLS functioning in HeLa cells is different from that identified in yeast and is localized to the C-terminus. Conclusions/Significance: This is the first demonstration of the possibility of non-nuclear localization of an SA protein. The reported difference in the organization between the two SA homologues may also be relevant to their partially divergent functions. The mechanisms determining subcellular localization of cohesins are only partially conserved between yeast and human cells

    Irr1/Scc3 Cohesin Interacts with Rec8 in Meiotic Prophase of Saccharomyces cerevisiae

    Get PDF
    The meiotic cohesin complex of S. cerevisiae shares with the mitotic one the Irr1/Scc3, Smc1, and Smc3 subunits, while the meiosis-specific subunit Rec8 re-places mitotic subunit Scc1/Mcd1. We noticed earlier that the irr1-1 mutation (F658G) severely affected meiosis. The irr1-1/IRR1 cells were entering meiosis before having completed mitotic cell division. Using meiotic two-hybrid assay and co-immunoprecipita-tion we show that in cells arrested in pachytene due to a lack of a gene-regulatory factor Ndt80, the Irr1 protein interacts with Rec8p and the irr1-1 mutation abolishes this interaction. These findings indicate an important role of Irr1p in early stages of meiosis
    corecore