128 research outputs found

    Familial Myeloproliferative Disorders

    Get PDF
    Review on Familial Myeloproliferative Disorders, with data on clinics, and the genes involved

    The double-edged sword of adenosine

    Get PDF

    Quantitative Proteome Heterogeneity in Myeloproliferative Neoplasm Subtypes and Association with JAK2 Mutation Status

    Get PDF
    Apart from well-known genetic abnormalities, several studies have reported variations in protein expression in Philadelphianegative myeloproliferative neoplasm (MPN) patients that could contribute toward their clinical phenotype. In this context, a quantitative mass spectrometry proteomics protocol was used to identify differences in the granulocyte proteome with the goal to characterize the pathogenic role of aberrant protein expression in MPNs. LC/MS-MS (LTQ Orbitrap) coupled to iTRAQ labeling showed significant and quantitative differences in protein content among various MPN subtypes [polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF)], and according to the genetic status of JAK2 (JAK2V617F presence and JAK2V617F allele burden). A number of differentially expressed proteins were identified, with the most frequent being members of the RAS GTPase family and oxidative stress regulatory proteins. Subsequent analysis found that calreticulin (CALR), known to be involved in calcium homeostasis and apoptotic signaling, was overexpressed in JAK2V617F granulocytes compared with JAK2 wild type and independently of the JAK2V617F allele burden. Finally, it was demonstrated, in a Ba/F3 cell model, that increased calreticulin expression was directly linked to JAK2V617F and could be regulated by JAK2 kinase inhibitors. Implications: In conclusion, these results reveal proteome alterations in MPN granulocytes depending on the phenotype and genotype of patients, highlighting new oncogenic mechanisms associated with JAK2 mutations and overexpression of calreticulin

    Lyl-1 regulates primitive macrophages and microglia development

    Get PDF
    During ontogeny, macrophage populations emerge in the Yolk Sac (YS) via two distinct progenitor waves, prior to hematopoietic stem cell development. Macrophage progenitors from the primitive/ early EMP and transient-definitive/ late EMP waves both contribute to various resident primitive macrophage populations in the developing embryonic organs. Identifying factors that modulates early stages of macrophage progenitor development may lead to a better understanding of defective function of specific resident macrophage subsets. Here we show that YS primitive macrophage progenitors express Lyl-1, a bHLH transcription factor related to SCL/Tal-1. Transcriptomic analysis of YS macrophage progenitors indicate that primitive macrophage progenitors present at embryonic day 9 are clearly distinct from those present at later stages. Disruption of Lyl-1 basic helix-loop-helix domain leads initially to an increased emergence of primitive macrophage progenitors, and later to their defective differentiation. These defects are associated with a disrupted expression of gene sets related to embryonic patterning and neurodevelopment. Lyl-1-deficiency also induce a reduced production of mature macrophages/microglia in the early brain, as well as a transient reduction of the microglia pool at midgestation and in the newborn. We thus identify Lyl-1 as a critical regulator of primitive macrophages and microglia development, which disruption may impair resident-macrophage function during organogenesis

    Genetic Alterations of the Thrombopoietin/MPL/JAK2 Axis Impacting Megakaryopoiesis

    Get PDF
    Megakaryopoiesis is an original and complex cell process which leads to the formation of platelets. The homeostatic production of platelets is mainly regulated and controlled by thrombopoietin (TPO) and the TPO receptor (MPL)/JAK2 axis. Therefore, any hereditary or acquired abnormality affecting this signaling axis can result in thrombocytosis or thrombocytopenia. Thrombocytosis can be due to genetic alterations that affect either the intrinsic MPL signaling through gain-of-function (GOF) activity (MPL, JAK2, CALR) and loss-of-function (LOF) activity of negative regulators (CBL, LNK) or the extrinsic MPL signaling by THPO GOF mutations leading to increased TPO synthesis. Alternatively, thrombocytosis may paradoxically result from mutations of MPL leading to an abnormal MPL trafficking, inducing increased TPO levels by alteration of its clearance. In contrast, thrombocytopenia can also result from LOF THPO or MPL mutations, which cause a complete defect in MPL trafficking to the cell membrane, impaired MPL signaling or stability, defects in the TPO/MPL interaction, or an absence of TPO production

    Altered Ca2+ Homeostasis in Red Blood Cells of Polycythemia Vera Patients Following Disturbed Organelle Sorting during Terminal Erythropoiesis

    Get PDF
    The authors thank Thierry Peyrard, Dominique Gien, Sirandou Tounkara, and Eliane VĂ©ra at Centre National de RĂ©fĂ©rence pour les Groupes Sanguins for the management of blood samples. The authors thank Sandrine Genetet and Isabelle Mouro-Chanteloup at the Inserm UMR_S1134 unit for their assistance in experiments. The authors also thank MichaĂ«l Dussiot at the Institute Imagine for his assistance in imaging flow cytometry. We thank Johanna Bruce and Virginie Salnot at 3P5 Proteomics Platform for sample preparation and analysis, and François Guillonneau and Patrick Mayeux for their management and strategies. Funding: The work was supported by Institut National de la SantĂ© et de la Recherche MĂ©dicale (Inserm); Institut National de la Transfusion Sanguine (INTS); the University of Paris; and grants from Laboratory of Excellence (Labex) GR-Ex, reference No. ANR-11-LABX-0051. The Labex GR- Ex is funded by the IdEx program “Investissements d’avenir” of the French National Research Agency, reference No. ANR-11-IDEX-0005-02 and ANR-18-IDEX-0001. R.B., M.G.R., and D.M.A. were funded by the European Union’s Horizon 2020 Research and Innovation Program under grant agreement No. 675115-RELEVANCE-H2020-MSCA-ITN-2015. R.B. also received financial support from SociĂ©tĂ© Française d’HĂ©matologie (SFH) and Club du Globule Rouge et du Fer (CGRF). R.B. is currently funded by the Innovate UK Research and Innovation Knowledge Transfer Partnership (KTP) between University of Aberdeen and Vertebrate Antibodies Ltd. (Partnership No. KTP12327). T.D. was supported by PhD grants from UniversitĂ© Paris Saclay MESR (MinistĂšre Enseignement SupĂ©rieur et de la Recherche) and then FRM (Fondation recherche mĂ©dicale). The Orbitrap Fusion mass spectrometer was acquired with funds from Fonds Europeen de Developpement Regional (FEDER) through the Operational Program for Competitiveness Factors and Employment 2007-2013 and from the Canceropole Ile de France.Peer reviewedPublisher PD

    An activating mutation in the CSF3R gene induces a hereditary chronic neutrophilia

    Get PDF
    We identify an autosomal mutation in the CSF3R gene in a family with a chronic neutrophilia. This T617N mutation energetically favors dimerization of the granulocyte colony-stimulating factor (G-CSF) receptor transmembrane domain, and thus, strongly promotes constitutive activation of the receptor and hypersensitivity to G-CSF for proliferation and differentiation, which ultimately leads to chronic neutrophilia. Mutant hematopoietic stem cells yield a myeloproliferative-like disorder in xenotransplantation and syngenic mouse bone marrow engraftment assays. The survey of 12 affected individuals during three generations indicates that only one patient had a myelodysplastic syndrome. Our data thus indicate that mutations in the CSF3R gene can be responsible for hereditary neutrophilia mimicking a myeloproliferative disorder

    Single-cell multi-omics identifies chronic inflammation as a driver of TP53-mutant leukemic evolution

    Get PDF
    Understanding the genetic and nongenetic determinants of tumor protein 53 (TP53)-mutation-driven clonal evolution and subsequent transformation is a crucial step toward the design of rational therapeutic strategies. Here we carry out allelic resolution single-cell multi-omic analysis of hematopoietic stem/progenitor cells (HSPCs) from patients with a myeloproliferative neoplasm who transform to TP53-mutant secondary acute myeloid leukemia (sAML). All patients showed dominant TP53 ‘multihit’ HSPC clones at transformation, with a leukemia stem cell transcriptional signature strongly predictive of adverse outcomes in independent cohorts, across both TP53-mutant and wild-type (WT) AML. Through analysis of serial samples, antecedent TP53-heterozygous clones and in vivo perturbations, we demonstrate a hitherto unrecognized effect of chronic inflammation, which suppressed TP53 WT HSPCs while enhancing the fitness advantage of TP53-mutant cells and promoted genetic evolution. Our findings will facilitate the development of risk-stratification, early detection and treatment strategies for TP53-mutant leukemia, and are of broad relevance to other cancer types

    ANKRD26 is a new regulator of type I cytokine receptor signaling in normal and pathological hematopoiesis

    Get PDF
    Sustained ANKRD26 expression associated with germline ANKRD26 mutations causes thrombocytopenia 2 (THC2), an inherited platelet disorder associated with a predisposition to leukemia. Some patients also present with erythrocytosis and/or leukocytosis. Using multiple human-relevant in vitro models (cell lines, primary patients’ cells and patient-derived induced pluripotent stem cells) we demonstrate for the first time that ANKRD26 is expressed during the early steps of erythroid, megakaryocyte and granulocyte differentiation, and is necessary for progenitor cell proliferation. As differentiation progresses, ANKRD26 expression is progressively silenced, to complete the cellular maturation of the three myeloid lineages. In primary cells, abnormal ANKRD26 expression in committed progenitors directly affects the proliferation/differentiation balance for the three cell types. We show that ANKRD26 interacts with and crucially modulates the activity of MPL, EPOR and G-CSFR, three homodimeric type I cytokine receptors that regulate blood cell production. Higher than normal levels of ANKRD26 prevent the receptor internalization that leads to increased signaling and cytokine hypersensitivity. These findings afford evidence how ANKRD26 overexpression or the absence of its silencing during differentiation is responsible for myeloid blood cell abnormalities in patients with THC2

    A study of CP violation in B-+/- -> DK +/- and B-+/- -> D pi(+/-) decays with D -> (KSK +/-)-K-0 pi(-/+) final states

    Get PDF
    A first study of CP violation in the decay modes B±→[KS0K±π∓]Dh±B^\pm\to [K^0_{\rm S} K^\pm \pi^\mp]_D h^\pm and B±→[KS0K∓π±]Dh±B^\pm\to [K^0_{\rm S} K^\mp \pi^\pm]_D h^\pm, where hh labels a KK or π\pi meson and DD labels a D0D^0 or D‟0\overline{D}^0 meson, is performed. The analysis uses the LHCb data set collected in pppp collisions, corresponding to an integrated luminosity of 3 fb−1^{-1}. The analysis is sensitive to the CP-violating CKM phase Îł\gamma through seven observables: one charge asymmetry in each of the four modes and three ratios of the charge-integrated yields. The results are consistent with measurements of Îł\gamma using other decay modes
    • 

    corecore