8 research outputs found

    The effects of counterion exchange on charge stabilization for anionic surfactants in nonpolar solvents.

    Get PDF
    HYPOTHESIS: Sodium dioctylsulfosuccinate (Aerosol OT or NaAOT) is a well-studied charging agent for model poly(methyl methacrylate) (PMMA) latexes dispersed in nonpolar alkane solvents. Despite this, few controlled variations have been made to the molecular structure. A series of counterion-exchanged analogs of NaAOT with other alkali metals (lithium, potassium, rubidium, and cesium) were prepared, and it was expected that this should influence the stabilization of charge on PMMA latexes and the properties of the inverse micelles. EXPERIMENTS: The electrophoretic mobilities of PMMA latexes were measured for all the counterion-exchanged AOT analogs, and these values were used to calculate the electrokinetic or ζ potentials. This enabled a comparison of the efficacy of the different surfactants as charging agents. Small-angle scattering measurements (using neutrons and X-rays) were performed to determine the structure of the inverse micelles, and electrical conductivity measurements were performed to determine the ionized fractions and Debye lengths. FINDINGS: Sodium AOT is a much more effective charging agent than any of the other alkali metal AOTs. Despite this, the inverse micelle size and electrical conductivity of NaAOT are unremarkable. This shows a significant non-periodicity in the charging efficiency of these surfactants, and it emphasizes that charging particles in nonpolar solvents is a complex phenomenon

    Structure And Morphology Of Poly(∈-caprolactone)/chlorinated Polyethylene (pcl/pec1) Blends Investigated By Dsc, Simultaneous Saxs/waxd, And Elemental Mapping By Esi-tem

    No full text
    In this work, the structure and morphology of miscible blends of poly(e-caprolactone) and chlorinated polyethylene with 48% chlorine weight content (PCL/PEC1) were studied by differential scanning calorimetry (DSC), simultaneous small and wide-angle X-ray scattering (SAXS/WAXD), and electron spectroscopy imaging in the transmission electron microscope (ESI-TEM). A unique glass transition temperature was obtained in each blend. In addition to this, the heat capacity and the width of the glass transition did not have a linear behavior with blend compositions. These facts correlate with the presence of microheterogeneities originated from different local compositions and densities of interactions in each blend. A consistent picture of the mode of segregation of PEC1 in the blend was obtained. For higher concentration of PCL, the volume fraction of lamellar stacks in the samples decreased as a function of the PEC1 content, indicating preferential interfibrillar localization of the amorphous component. For lower PCL concentration, interespherulitic segregation was the dominant mode. Elemental maps of chlorine confirmed these results and also revealed changes in the concentration of this element depending on its localization in the microstructure of the system. Gradients of chlorine concentration were measured in larger amorphous regions of the 40/60 and 20/80 PCL/PEC1 blends. Calculations of the one-dimensional correlation function probed the reduction of the lamellar thickness of PCL when the quantity of PEC1 in the blend was increased. Such a tendency could be rationalized if the reduction of the fold surface free energy was a dominant factor in terms of the reduction of the degree of supercooling in the final crystal thickness. © 2007 American Chemical Society.402253264Debier, D., Jonas, A.M., Legras, R., (1998) J. Polym Sci. B: Polym. Phys, 36, pp. 2197-2210Cheng, H.L., Li, L.J., Lin, T.L., (1998) Macromolecules, 31, pp. 2255-2264Jonas, A.M., Ivanov, D.A., Yoon, D.Y., (1998) Macromolecules, 31, pp. 5352-5362Talibuddin, S., Wu, L., Runt, J., Lin, J.S., (1996) Macromolecules, 29, pp. 7527-7535Bélorgey, G., Prud'homme, R.E., (1982) J. Polym. Sci., Polym. Phys. Ed, 20, pp. 191-203Defieuw, G., Groeninckx, G., Reynaers, H., (1989) Polymer, 30, pp. 595-603Calandrelli, L., Immirzi, B., Malinconico, M., Volpe, M.G., Oliva, A., Della Ragione, F., (2000) Polymer, 41, pp. 8027-8033Pitt, C.G., Jeffcoat, A.R., Zweidinger, R.A., Schindler, A., (1979) J. Biomed. Mater. Res, 13, pp. 497-507Wang, Z.G., Hsiao, B.S., Fu, B.X., Liu, L., Yeh, F., Sauer, B.B., Chang, H., Schultz, J.M., (2000) Polymer, 41, pp. 1791-1797Huang, C.I., Chen, J.R., (2001) J. Polym. Sci., Polym. Phys. Ed, 39, pp. 2705-2715Shabana, H.M., Olley, R.H., Bassett, D.C., Jungnickel, B.J., (2000) Polymer, 41, pp. 5513-5523Crevecouer, G., Groeninckx, G., (1991) Macromolecules, 24, pp. 1190-1195Hudson, S.D., Davis, D.D., Lovinger, A.J., (1992) Macromolecules, 25, pp. 1759-1765Lisowski, M.S., Liu, Q., Cho, J., Runt, J., Yeh, F., Hsiao, B.S., (2000) Macromolecules, 33, pp. 4842-4849Ivanov, D.A., Lipnik, P.D.M., Jonas, A.M., (1997) J. Polym. Sci., Polym. Phys, 35, pp. 2565-2570Eastmond, G.C., (2000) Adv. Polym. Sci, 149, pp. 59-223Svoboda, P., Kressler, J., Chiba, T., Inoue, T., Kammer, H.W., (1994) Macromolecules, 27, pp. 1154-1159Torriani, I.L., Oliveira, C.L.P., Dos Santos, D.R., Neuenschwander, R., Kellermann, G., Plivelic, T.S., (1999) Abstracts of the SAS-99 International Conference, p. 298. , Brookhaven, NYBras, W., Derbyshire, G.E., Devine, A., Clark, S.M., Komanschek, B.E., Ryan, A.J., (1995) J. Appl. Crystallogr, 28, pp. 26-32Plivelic, T.S., Cassu, S.N., Gonçalves, M.C., Torriani, I.L., (2005) Polím.: Ciên. Tecnol, 15, pp. 199-206Fox, T.G., (1956) Bull. Am. Phys. Soc, 1, p. 123Fernandes, A.C., Barlow, J.W., Paul, D.R., (1984) J. Appl. Polym. Sci, 29, pp. 1971-1983Guo, Q., Harrats, C., Groeninckx, G., Reynaers, H., Koch, M.H.J., (2001) Polymer, 42, pp. 6031-6041Khambatta, F.B., Warner, F., Russell, T., Stein, R.S., (1976) J. Polym. Sci., Polym. Phys. Ed, 14, pp. 1391-1424Cassu, S.N., Felisberti, M.I., (1997) Polymer, 38, pp. 3907-3911Song, M., Hammiche, A., Pollock, H.M., Hourston, D.J., Reading, M., (1995) Polymer, 36, pp. 3313-3316Shen, S., Torkelson, J.M., (1992) Macromolecules, 25, pp. 721-728Hutchinson, J.M., (1997) The physics of glassy polymers, pp. 105, 128. , 2nd ed, Haward, R. N, Young, R. J, Eds, Chapman & Hall, LondonGoderis, B., Reynaers, H., Koch, M.H.J., Mathot, V.B.F., (1999) J. Polym. Sci., Polym. Phys. Ed, 37, pp. 1715-1738Strobl, G.R., Schneider, M., (1980) J. Polym. Sci. Polym. Phys. Ed, 18, pp. 1343-1359Huo, P.P., Cebe, P., Capel, M., (1993) Macromolecules, 26, pp. 4275-4282Russell, T.P., Stein, R.S., (1982) J. Polym. Sci., Polym. Phys. Ed, 20, pp. 1593-1607DeLassus, P.T., Whiteman, N.F., (1999) Polymer Handbook, p. 169. , 4th ed, Brandrup, J, Immergut, E. H, Grulke, E. A, Eds, John Wiley & Sons: New York, Chapter 5, pWalsh, D., Furuzono, T., Tanaka, J., (2001) Biomaterials, 22, pp. 1205-1212Hoffman, J.D., Weeks, J.J., (1962) J. Res. Natl. Bur. Stand., Sect. A, 66, p. 13Hoffman, J.D., Davis, G.T., Lauritzen, J.I., (1976) Treatise on Solid State Chemistry, 3, p. 497. , Hanay, N. B, Ed, Plenum Press: New YorkHoffman, J.D., Miller, R.L., (1997) Polymer, 38, pp. 3151-3212Wenig, W., Karasz, F.E., MacKnight, W.J., (1975) J. Appl. Phys, 46, pp. 4194-4198Oudhuis, A. A. C. M.Thiewes, H. J.van Hutten, P. F.t Blinke, G. Polymer 1994, 35, 3936-3942Kuo, S.W., Chan, S.C., Chang, F.C., (2003) Macromolecules, 36, pp. 6653-6661Plivelic, T.S., Cassu, S.N., Gonçalves, M.C., Torriani, I.L., Work in progressLovinger, A.J., Hudson, S.D., Davis, D.D., (1992) Macromolecules, 25, pp. 1752-1758Vaughan, A.S., (1992) Polymer, 33, pp. 2513-252

    Domain Structure And Miscibility Studies Of Blends Of Styrene-butadiene-styrene Block Copolymers (sbs) And Styrene-glycidyl Methacrylate Statistical Copolymers (ps-gma) Using Saxs And Dmta

    No full text
    The domain structure and miscibility in the solid state of a series of blends of styrene-butadiene-styrene (SBS) block copolymers and styrene-glycidyl methacrylate (PS-GMA) statistical copolymers with varying molecular weights and compositions were studied using small angle X-ray scattering and dynamic mechanical thermal analysis. Depending on the molecular characteristics of each component, different types and degrees of solubilization of PS-GMA in SBS were found which, in addition to the initially SBS phase morphology, lead to materials with multiphase domain morphologies with differences in size and structure. The degree of solubilization of PS-GMA into the PS domains of SBS was found to be higher for blends containing PS-GMA with lower molecular weight (Mw = 18 100 g mol-1) and lower GMA content (1 wt%) and/or for SBS with higher PS content (39 wt%) and longer PS blocks (Mw = 19 600 g mol-1). Localized solubilization of PS-GMA in the middle of PS domains of SBS was found to be the most probable to occur for the systems under study, causing swelling of PS domains. However, uniform solubilization was also observed for SBS/PS-GMA blends containing SBS with composition in the range of a morphological transition (PS block Mw = 19 600 g mol-1 and 39 wt% of PS) causing a morphological transition in the SBS copolymer (cylinder to lamella). Copyright © 2006 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.563308316Folkes, M.J., (1985) Processing, Structure and Properties of Block Copolymers, , Elsevier, New YorkHolden, G., Legge, N.R., Quirk, R., Schoroeder, H.E., (1996) Themoplastic Elastomers, , 2nd edition. Hanser, New YorkLodge, T.P., (2003) Macromol Chem Phys, 204, p. 265Feng, H., Feng, Z., Yuan, H., Shen, L., (1994) Macromolecules, 27, p. 7830Feng, H., Feng, Z., Yuan, H., (1994) Macromolecules, 27, p. 7835Dondos, A., Christopoulou, V., Papanagopoulos, D., (1999) J Polym Sci B: Polym Phys, 37, p. 379Canto, L.B., Hage, E., Pessan, L.A., J Appl Polym Sci, , (in press)Canto, L.B., Mantovani, G.L., Azevedo, E.R., Bonagamba, T.J., Hage, E., Pessan, L.A., (2006) Polym Bull, 57, p. 513Canto, L.B., Pessan, L.A., (2002) Polym Test, 21, p. 35Sperling, L.B., (1992) Introduction to Physical Polymer Science, , John Wiley and Sons, New YorkKellerman, G., Vicentin, F., Tamura, E., Rocha, M., Tolentino, M., Barbosa, A., (1997) J Appl Crystallogr, 30, p. 880Krause, S., Lu, Z.H., Iskandar, M., (1982) Macromolecules, 15, p. 1076Tanaka, H., Hasegawa, H., Hashimoto, T., (1991) Macromolecules, 24, p. 240Hashimoto, T., Tanaka, H., Hasegawa, H., (1990) Macromolecules, 23, p. 437

    Grain Growth Of Cuo Nanocrystal Activated By High Energy Ball Milling

    No full text
    X-ray Diffraction (XRD), small-angle X-ray scattering, scanning electron microscopy and energy dispersive X-ray Analysis were used to investigate the effect of controlled high energy ball milling (HEBM) on the average volume weighted crystallite size, 〈D〉V and weighted average microstrain, 〈ε〉, of nanostructures of CuO prepared by solid state reaction. The starting material, S0, consists of almost strain free nanocrystals of monoclinic CuO with 〈D〉V ≈ 20nm, as determined by XRD data Rietveld analysis. It was found that after an initial decrease of 〈D〉V and increase of 〈ε〉, the values of these parameters go through a steady-state stage followed by an increase of an order of magnitude in 〈D〉 after a period of only 120 m of HEBM. According to the results here presented, the presence of small amounts of contaminants in the starting material can have an influence on the kinetics of crystal growth in HEBM CuO. © 2006 Elsevier B.V. All rights reserved.3891135139Koch, C.C., (2003) Rev. Adv. Mater. Sci., p. 91Oleszak, D., Shingu, P.H., (1996) J. Appl. Phys., 79 (6), p. 2975Eckert, J., Holzer, J.C., Kill III, C.E., Johnson, W.L., (1992) J. Mater. Res., 7, p. 1751Koch, C.C., (1997) Nanostruct. Mater., 9, p. 13Mohamed, F.A., Xun, Y., (2003) Mater. Sci. Eng. A, 354, p. 133Witkin, D.B., Lavernia, E.J., (2006) Prog. Mater. Sci., 51, p. 1Stewart, S.J., Tueros, M.J., Cernicchiaro, G., Scorzelli, R.B., (2004) Solid State Commun., 129, p. 347Karagedov, G.R., Lyakhov, N.Z., (2003) KONA, 21, p. 76Stewart, S.J., Borzi, R.A., Punte, G., Mercader, R.C., García, F., (2001) J. Phys. Condens. Matter, 13, p. 1743Stewart, S.J., Borzi, R.A., Cabanillas, E.D., Punte, G., Mercader, R.C., (2003) J. Magn. Magn. Mater., 260, p. 447Xu, J.F., (1999) J. Solid State Chem., 147, p. 516Kellermann, G., Vicentin, F., Tamura, E., Rocha, M., Tolentino, H., Barbosa, A., Craievich, A., Torriani, I., (1997) J Appl. Crystallogr., 30, p. 880Rodriguez-Carvajal, J., Fernandez-Diaz, M.T., Martinez, J.L., (1991) J. Phys.: Condens. Matter, 3, p. 3215Åsbrink, S., Norrby, L.J., (1970) Acta Crystallogr. Sect. B, 26, p. 8Young, R.A., (1993) The Rietvel Method, , Oxford University Press, OxfordGlatter, O., Kratky, O., (1982) Small-Angle X-Ray Scattering, , Academic Press, New YorkFecht, H.J., Hellstern, E., Fu, Z., Johnson, W.L., (1990) Metall. Trans. A, 21, p. 2333Zhang, X., Wang, H., Scattergood, R.O., Narayan, J., Koch, C.C., (2002) Acta. Mater., 50, p. 399

    Synthesis Of In2o3nanoparticles By Thermal Decomposition Of A Citrate Gel Precursor

    No full text
    This paper describes the synthesis of indium oxide by a modified sol-gel method, and the study of thermal decomposition of the metal complex in air. The characterization of the intermediate as well as the final compounds was carried out by thermogravimetry, differential thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and small angle X-ray scattering. The results show that the indium complex decomposes to In2O3 with the formation of an intermediate compound. Nanoparticles of cubic In2O3 with crystallite sizes in the nanosize range were formed after calcination at temperatures up to 900°C. Calcined materials are characterized by a polydisperse distribution of spherical particles with sharp and smooth surfaces. © Springer 2005.72-3203208Avivi, S., Mastai, Y., Gedanken, A., (2000) Chem. Mater., 12, p. 1229Gopchandran, K.G., Joseph, B., Abraham, J.T., Koshy, P., Vaidyan, V.K., (1997) Vacuum, 86, p. 547Granqvist, C.G., (1993) Appl. Phys. A: Solid Surf., 57, p. 19Guinier, A., Fournet, G., (1955) Small Angle Scattering of X-rays, , Wiley, New YorkGurlo, A., Barsan, N., Weimar, U., Ivanovskaya, M., Taurino, A., Siciliano, P., (2003) Chem. Mater., 15, p. 4377Gurlo, A., Ivanovskaya, M., Barsan, N., Scweizer-Berberich, M., Weimar, U., Göpel, W., Diéguez, A., (1997) Sens. Actuat. B, 44, p. 327Hamada, S., Kudo, Y., Kobayashi, T., (1993) Coll. Surf., A79, p. 227Hattori, T., Nishiyama, S., Kishi, Y., Iwadate, Y., (1993) J. Mater. Sci. Lett., 12, p. 883Hiroyuki, Y., Jun, T., Koji, M., Miura, N., Nobaru, Y., (1997) J. Electrochem. Soc., 144, pp. L158Kakihana, M., (1996) J. Sol-gel Sci. Technol., 6, p. 7Keller, R.J., (1986) The Sigma Library of FTIR Spectra, 2. , Sigma Chemical, St. LouisMarcilly, C., Courty, P., Delmon, B., (1970) J. Am. Ceram. Soc., 53, p. 56Matsumoto, T., Suzuki, J., Ohnuma, M., Kanemitsu, Y., Matsumoto, Y., (2001) Phys. Rev. B, 63, p. 195322Murali, A., Barve, A., Leppert, V.J., Risbud, S.H., Kennedy, I.M., Lee, H.W.H., (2001) Nano Lett., 1, p. 287Nyquist, R.A., Kagel, R.O., (1971) Infrared Spectra of Inorganic Compounds, 4. , Academic Press, New YorkPerez-Maquela, L.A., Wang, L., Matijevic, E., (1998) Langmuir, 14, p. 4397Semenyuk, V., Svergun, D.I., GNOM - A program package for small angle scattering data processing (1991) J. Appl. Cryst., 24, p. 537Srivastava, A., Singhi, P., Gunjikar, V.G., Sinha, A.P.B., (1985) Thermochim. Acta, 86, p. 77Steffes, H., Imawan, C., Sozbacher, F., Obermeier, E., (2001) Sens. Actuat. B, 78, p. 106Szymanski, H.A., (1966) Interpreted Infrared Spectra, 2. , Plenum Press, New YorkTadashi, T., Kengo, S., Masanori, N., (1993) Sens. Actuat. B, 13-14, p. 404Taguchi, H., Matsu-Ura, S., Nagao, M., (1997) J. Solid State Chem., 129, p. 60Tahar, R.B.H., Ban, T., Ohya, Y., Takahashi, Y., (1997) J. Appl. Phys., 82, p. 865Tanaka, S., Esaka, T., (2001) J. Mater. Res., 16, p. 1389Warren, B.E., (1990) X-ray Diffraction, p. 258. , Dover, New YorkYang, H., Tang, A., Zhang, X., Yang, W., Qiu, G., (2004) Scripta Mater., 50, p. 413Yura, K., Fredrikson, K.C., Matijevic, E., (1990) Coll. Surf., 50, p. 281Zhan, Z., Song, W., Jiang, D., (2004) J. Coll. Interface Sci., 271, p. 36

    Orientational order in a glass of charged platelets with a concentration gradient

    Get PDF
    Colloidal dispersions of anisometric particles can display dynamical arrest and ordering involving both translational and rotational degrees of freedom. We show that orientational order can develop in glassy colloidal dispersions of charged platelets when a concentration gradient is imposed through solvent evaporation. Our model system of Laponite (LRD) platelets in deionized water has been extensively studied for its ergodic to non-ergodic transitions, and the existence of an underlying isotropic-nematic phase transition has been a subject of debate. We use small-angle X-ray scattering, dynamical light scattering and birefringence to show that the orientational order we observe does not result from an underlying, uniquely determined equilibrium state with orientational order, but from plastic deformation of the colloidal glass

    Structural And Magnetic Properties Of Nife2o 4-sno2 Nanocomposite

    No full text
    The structural and magnetic properties of the NiFe2O 4-SnO2 composite, obtained by ball-milling during different times, were investigated by X-ray diffraction, small-angle X-ray scattering, Mössbauer spectroscopy and vibrating sample magnetometry. The results showed the reduction of the crystalline particle size and modification in the nature of the system interfaces as a consequence of the mechanical treatment. Specimens with smaller particles displayed strong superparamagnetism. Large variation of the hysteresis loops for the different milling times was observed. © 2003 Elsevier B.V. All rights reserved.272-276III22112213Chien, C.L., (1995) Ann. Rev. Mater. Sci., 25, p. 129Mandai, K., (2002) J. Appl. Phys., 92, p. 501Zhou, Z.H., (2002) J. Appl. Phys., 91, p. 6015Verdes, C.G., (2001) J. Appl. Phys., 89, p. 7475Albuquerque, A.S., (1999) J. Magn. Magn. Mater., 192, p. 277Albuquerque, A.S., (2001) J. Magn. Magn. Mater., 226, p. 1379Kellerman, G., (1997) J. Appl. Crystallogr., 30, p. 880Vong, C.G., (1973) J. Appl. Cryst., 6, p. 81Bale, H., Schmidt, P.W., (1983) Phys. Rev. Lett., 53, p. 59

    Polymorphie Phases Of Natural Fat From Cupuassu (theobroma Grandiflorum) Beans: A Waxs/saxs/dsc Study

    No full text
    The polymorphic phases of natural fat extracted from cupuassu beans were studied by performing in situ temperature-dependent X-ray scattering experiments and differential scanning calorimetry (DSC) using synchrotron radiation. Cupuassu (Theobroma grandiflorwn) is a native plant of the Theobroma species originally found in Brazil's Amazon region, with a great potential for utilization in the chocolate industry. The experiments and data analysis were performed using as a reference the known polymorphic phase behavior of cocoa butter. The results led to the identification of cupuassu fat polymorphic crystalline phases. Using the nomenclature generally found in the literature for triaceylclycerols (TAGs) systems, these phases were labeled γ, α, β ', and β in increasing order of melting temperature and stability. Differential scanning calorimetry measurements of fusion temperatures indicated the existence of two β states in cupuassu fat. These phases were labeled β 2 and β 1, following the aforementioned nomenclature. In spite of the different melting points, the existence of α Β 2→Β 1 transition could not be proven, due to the great deal of structural similarity of the corresponding X-ray patterns obtained in our experiments. A comparison of our results with those reported for several pure compounds and ternary mixtures of TAGs indicated that these components are mainly responsible for the cupuassu fat phase behavior. This study provided the first experimental results of an in-situ follow-up of the polymorphic phase transitions and crystallization of fat from Brazilian cupuassu beans, an industrially important natural product. © 2009 American Chemical Society.91251555163Garti, N., Sato, K., (1988) Crystallization and Polymorphism of Fats and Fatty Acids, 31, pp. 97-137. , Garti, N., Sato K., Eds.Marcel Dekker Inc.: Surfactant Science SeriesNew York, NY Chapter 3Larsson, K., (1966) Acta Chem. Scand., 20 (8), pp. 2255-2260Sato, K., Ueno, S., Yano, J., (1999) Prog. Lipid Res., 38, pp. 91-116Willie, R.L., Lutton, E.S., (1966) J. Am. Oil Chem. Soc., 43, pp. 491-496Lannes, S.C.S., Medeiros, M.L., (2003) Braz. J. Pharm. Sci., 39 (1), pp. 115-123Lannes, S.C.S., Medeiros, M.L., Amaral, R.L., (2002) Braz. J. Pharm. Sci., 38 (4), pp. 463-469Chapman, G.M., Akehurst, E.E., Wright, W.B., (1971) J. Am. Oil Chem. Soc., 48, pp. 824-830Loisel, C., Keller, G., Lecq, G., Bourgaux, C., Ollivon, M., (1998) J. Am. Oil Chem. Soc, 75, pp. 425-439Van Malssen, K., Van Langevelde, A., Peschar, R., Schenk, H., (1999) J. Am. Oil Chem. Soc, 76, pp. 669-676Van Malssen, K., Peschar, R., Schenk, H., (1996) J. Am. Oil Chem. Soc., 73, pp. 1209-1215Van Malssen, K., Peschar, R., Brito, C., Schenk, H., (1996) J. Am. Oil Chem. Soc, 73, pp. 1225-1230Van Mechelen, J.B., Peschar, R., Schenk, H., (2006) Acta Crystallogr., 552, pp. 1121-1130Van Mechelen, J.B., Peschar, R., Schenk, H., (2006) Acta Crystallogr., B62, pp. 1131-1138(2007) Acta Crystallogr., B63, p. 161. , CorrigendumVan Mechelen, J.B., Goubitz, K., Pop, M., Peschar, R., Schenk, H., (2008) Acta Crystallogr., B64, pp. 771-779Van Mechelen, J.B., Peschar, R., Schenk, H., (2008) Acta Crystallogr., B64, pp. 240-248Van Mechelen, J.B., Peschar, R., Schenk, H., (2008) Acta Crystallogr., B64, pp. 249-259(1989) AOCS, Official Methods and Recommended Practices of the American Oil Chemists' Society, , 4th ed.American Oil Chemists Society: Champaign Method 1-62, Ce 5b-89 and Cd 16b-93Bras, W., Derbyshire, G.E., Devine, A., Clark, S.M., Cooke, J., Komanschek, B.E., Ryan, A.J., (1995) J. Appl. Crystallogr., 28, pp. 26-32Luccas, V., (2001) Fracionamento Termico e Obtenção de Gorduras de Cupuaçu Alternativas A Manteiga de Cacau Para Uso Na Fabricaç ão de Chocolate, , http://libdigi.unicamp.br/documen/?code=vtls000235715, Ph.D. thesis, Universidade Estadual de Campinas, Campinas, SPUeno, S., Minato, A., Seto, H., Amemiya, Y., Sato, K., (1991) J. Phys. Chem. B, 101, pp. 6847-6854Ueno, S., Minato, A., Yano, J., Sato, K., (1999) J. Cryst. Growth, 198-199, pp. 1326-1329Arishima, T., Sagi, N., Mori, H., Sato, K., (1991) J. Am. Oil Chem. Soc, 55, pp. 710-715Schenk, H., Peschar, R., (2004) Radiat. Phys. Chem., 71, pp. 829-83
    corecore