10 research outputs found

    High‐Yield Production, Characterization, and Functionalization of Recombinant Magnetosomes in the Synthetic Bacterium Rhodospirillum rubrum “magneticum”

    Get PDF
    Recently, the photosynthetic Rhodospirillum rubrum has been endowed with the ability of magnetosome biosynthesis by transfer and expression of biosynthetic gene clusters from the magnetotactic bacterium Magnetospirillum gryphiswaldense. However, the growth conditions for efficient magnetite biomineralization in the synthetic R. rubrum "magneticum", as well as the particles themselves (i.e., structure and composition), have so far not been fully characterized. In this study, different cultivation strategies, particularly the influence of temperature and light intensity, are systematically investigated to achieve optimal magnetosome biosynthesis. Reduced temperatures <= 16 degrees C and gradual increase in light intensities favor magnetite biomineralization at high rates, suggesting that magnetosome formation might utilize cellular processes, cofactors, and/or pathways that are linked to photosynthetic growth. Magnetosome yields of up to 13.6 mg magnetite per liter cell culture are obtained upon photoheterotrophic large-scale cultivation. Furthermore, it is shown that even more complex, i.e., oligomeric, catalytically active functional moieties like enzyme proteins can be efficiently expressed on the magnetosome surface, thereby enabling the in vivo functionalization by genetic engineering. In summary, it is demonstrated that the synthetic R. rubrum "magneticum" is a suitable host for high-yield magnetosome biosynthesis and the sustainable production of genetically engineered, bioconjugated magnetosomes

    A Practicable Measurement Strategy for Compliance Checking Number Concentrations of Airborne Nano- and Microscale Fibers

    No full text
    Despite compelling reports on asbestos-like pathogenicity, regulatory bodies have been hesitant to implement fiber number-based exposure limits for biodurable nanoscale fibers. One reason has been the lack of a practicable strategy for assessing airborne fiber number concentrations. Here, a method is proposed, detailed and tested for compliance checking concentrations of airborne nano- and microscale fibers. It relies on Poisson statistical significance testing of the observed versus a predicted number of fibers on filters that have sampled a known volume of aerosol. The prediction is based on the exposure concentration to test. Analogous to the established counting rules for WHO-fibers, which use a phase contrast microscopy-related visibility criterion of 200 nm, the new method also introduces a cut-off diameter, now at 20 nm, which is motivated by toxicological findings on multi-walled carbon nanotubes. This cut-off already reduces the workload by a factor of 400 compared to that necessary for imaging, detecting and counting nanofibers down to 1 nm in diameter. Together with waiving any attempt to absolutely quantify fiber concentrations, a compliance check at the limit-of-detection results in an analytical workload that renders our new approach practicable. The proposed method was applied to compliance checking in 14 very different workplaces that handled or machined nanofiber-containing materials. It achieved detecting violations of the German benchmark exposure level of 10,000 nanofibers per cubic meter

    Investigation of the Tendency of Carbon Fibers to Disintegrate into Respirable Fiber-Shaped Fragments

    No full text
    Recent reports of the release of large numbers of respirable and critically long fiber-shaped fragments from mesophase pitch-based carbon fiber polymer composites during machining and tensile testing have raised inhalation toxicological concerns. As carbon fibers and their fragments are to be considered as inherently biodurable, the fiber pathogenicity paradigm motivated the development of a laboratory test method to assess the propensity of different types of carbon fibers to form such fragments. It uses spallation testing of carbon fibers by impact grinding in an oscillating ball mill. The resulting fragments were dispersed on track-etched membrane filters and morphologically analyzed by scanning electron microscopy. The method was applied to nine different carbon fiber types synthesized from polyacrylonitrile, mesophase or isotropic pitch, covering a broad range of material properties. Significant differences in the morphology of formed fragments were observed between the materials studied. These were statistically analyzed to relate disintegration characteristics to material properties and to rank the carbon fiber types according to their propensity to form respirable fiber fragments. This tendency was found to be lower for polyacrylonitrile-based and isotropic pitch-based carbon fibers than for mesophase pitch-based carbon fibers, but still significant. Although there are currently only few reports in the literature of increased respirable fiber dust concentrations during the machining of polyacrylonitrile-based carbon fiber composites, we conclude that such materials have the potential to form critical fiber morphologies of WHO dimensions. For safe-and-sustainable carbon fiber-reinforced composites, a better understanding of the material properties that control the carbon fiber fragmentation is imperative
    corecore