51 research outputs found

    Leveraging genomics to understand the broader role of fungal small secreted proteins in niche colonization and nutrition

    Get PDF
    The last few years have seen significant advances in the breadth of fungi for which we have genomic resources and our understanding of the biological mechanisms evolved to enable fungi to interact with their environment and other organisms. One field of research that has seen a paradigm shift in our understanding concerns the role of fungal small secreted proteins (SSPs) classified as effectors. Classically thought to be a class of proteins utilized by pathogenic microbes to manipulate host physiology in support of colonization, comparative genomic studies have demonstrated that mutualistic fungi and fungi not associated with a living host (i.e., saprotrophic fungi) also encode inducible effector and candidate effector gene sequences. In this review, we discuss the latest advances in understanding how fungi utilize these secreted proteins to colonize a particular niche and affect nutrition and nutrient cycles. Recent studies show that candidate effector SSPs in fungi may have just as significant a role in modulating hyphosphere microbiomes and in orchestrating fungal growth as they do in supporting colonization of a living host. We conclude with suggestions on how comparative genomics may direct future studies seeking to characterize and differentiate effector from other more generalized functions of these enigmatic secreted proteins across all fungal lifestyles

    The ectomycorrhizal fungus Pisolithus microcarpusencodes a microRNA involved in cross-kingdom gene silencing during symbiosis

    Get PDF
    Small RNAs (sRNAs) are known to regulate pathogenic plant-microbe interactions. Emerging evidence from the study of these model systems suggests that microRNAs (miRNAs) can be translocated between microbes and plants to facilitate symbiosis. The roles of sRNAs in mutualistic mycorrhizal fungal interactions, however, are largely unknown. In this study, we characterized miRNAs encoded by the ectomycorrhizal fungus Pisolithus microcarpus and investigated their expression during mutualistic interaction with Eucalyptus grandis. Using sRNA sequencing data and in situ miRNA detection, a novel fungal miRNA, Pmic_miR-8, was found to be transported into E. grandis roots after interaction with P. microcarpus. Further characterization experiments demonstrate that inhibition of Pmic_miR-8 negatively impacts the maintenance of mycorrhizal roots in E. grandis, while supplementation of Pmic_miR-8 led to deeper integration of the fungus into plant tissues. Target prediction and experimental testing suggest that Pmic_miR-8 may target the host NB-ARC domain containing transcripts, suggesting a potential role for this miRNA in subverting host signaling to stabilize the symbiotic interaction. Altogether, we provide evidence of previously undescribed cross-kingdom sRNA transfer from ectomycorrhizal fungi to plant roots, shedding light onto the involvement of miRNAs during the developmental process of mutualistic symbioses

    Acquisition of host-derived carbon in biomass of the ectomycorrhizal fungus Pisolithus microcarpus is correlated to fungal carbon demand and plant defences

    Get PDF
    Ectomycorrhizal (ECM) fungi are key players in forest carbon (C) sequestration, receiving a substantial proportion of photosynthetic C from their forest tree hosts in exchange for plant growth-limiting soil nutrients. However, it remains unknown whether the fungus or plant controls the quantum of C in this exchange, nor what mechanisms are involved. Here, we aimed to identify physiological and genetic properties of both partners that influence ECM C transfer. Using a microcosm system, stable isotope tracing, and transcriptomics, we quantified plant-to-fungus C transfer between the host plant Eucalyptus grandis and nine isolates of the ECM fungus Pisolithus microcarpus that range in their mycorrhization potential and investigated fungal growth characteristics and plant and fungal genes that correlated with C acquisition. We found that C acquisition by P. microcarpus correlated positively with both fungal biomass production and the expression of a subset of fungal C metabolism genes. In the plant, C transfer was not positively correlated to the number of colonized root tips, but rather to the expression of defence- and stress-related genes. These findings suggest that C acquisition by ECM fungi involves individual fungal demand for C and defence responses of the host against C drain

    The mutualism effector MiSSP7 of Laccaria bicolor alters the interactions between the poplar JAZ6 protein and its associated proteins

    Get PDF
    Despite the pivotal role of jasmonic acid in the outcome of plant-microorganism interactions, JA-signaling components in roots of perennial trees like western balsam poplar (Populus trichocarpa) are poorly characterized. Here we decipher the poplar-root JA-perception complex centered on PtJAZ6, a co-repressor of JA-signaling targeted by the effector protein MiSSP7 from the ectomycorrhizal basidiomycete Laccaria bicolor during symbiotic development. Through protein–protein interaction studies in yeast we determined the poplar root proteins interacting with PtJAZ6. Moreover, we assessed via yeast triple-hybrid how the mutualistic effector MiSSP7 reshapes the association between PtJAZ6 and its partner proteins. In the absence of the symbiotic effector, PtJAZ6 interacts with the transcription factors PtMYC2s and PtJAM1.1. In addition, PtJAZ6 interacts with it-self and with other Populus JAZ proteins. Finally, MiSSP7 strengthens the binding of PtJAZ6 to PtMYC2.1 and antagonizes PtJAZ6 homo-/heterodimerization. We conclude that a symbiotic effector secreted by a mutualistic fungus may promote the symbiotic interaction through altered dynamics of a JA-signaling-associated protein–protein interaction network, maintaining the repression of PtMYC2.1-regulated genes

    Ethylene–a key arbitrator to plant–fungal symbiotic interactions?

    No full text
    Plant roots often form symbiotic interactions with soilborne fungi. The symbiotic structures formed during this interaction require a host of signalling molecules to set up a balanced and mutually beneficial interaction between both organisms. One hormone implicated in contributing to this process on behalf of the plant is ethylene. As a gas, ethylene serves as an effective signalling agent both within an organism and as a longer-distance signal between organisms, as it can diffuse through both air and soil. Ethylene is produced by plants as well as soilborne fungi that form a symbiotic relationship with plant roots. Ethylene has been shown to have an effect on root development in plants (Kaska et al., 1999) and to be released during the establishment of root–fungal symbiosis (Rupp et al., 1989). Although the exact role of ethylene during this process has not been fully elucidated, it can at times aid or inhibit the colonization by fungi. While ethylene has a role as a signalling agent in a number of different plant processes, it is commonly known as the ‘stress’ hormone released by the plant in order to recruit defences against both biotic and abiotic stressors

    Know your enemy, embrace your friend : using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms

    No full text
    Microorganisms, or 'microbes', have formed intimate associations with plants throughout the length of their evolutionary history. In extant plant systems microbes still remain an integral part of the ecological landscape, impacting plant health, productivity and long-term fitness. Therefore, to properly understand the genetic wiring of plants, we must first determine what perception systems plants have evolved to parse beneficial from commensal from pathogenic microbes. In this review, we consider some of the most recent advances in how plants respond at the molecular level to different microbial lifestyles. Further, we cover some of the means by which microbes are able to manipulate plant signaling pathways through altered destructiveness and nutrient sinks, as well as the use of effector proteins and micro-RNAs (miRNAs). We conclude by highlighting some of the major questions still to be answered in the field of plant-microbe research, and suggest some of the key areas that are in greatest need of further research investment. The results of these proposed studies will have impacts in a wide range of plant research disciplines and will, ultimately, translate into stronger agronomic crops and forestry stock, with immune perception and response systems bred to foster beneficial microbial symbioses while repudiating pathogenic symbioses

    Mutualistic effectors : architects of symbiosis

    No full text
    All living things are heavily influenced by their environment and the flora and fauna living within, on, and around them. It is thought that since the time plants first colonized earth, fungal symbiosis was valuable, if not essential, for plant survival (Baylis, 1972; Pirozynski and Mallock, 1975). Reasoning for this claim is both theoretical and based on the fossil record (Kidston and Lang, 1921; Gehrig et al., 1996; Redecker et al., 2000; Brundrett, 2002; Read and Perez-Moreno, 2003). If fungal–host symbiosis occurred in a similar fashion to present-day mutualistic examples, it is assumed that the interaction between bryophyte-like plants and filamentous fungi allowed the plant to better anchor to the substrate as well as gain nutrients and water from its fungal partner. These early fungal symbionts were likely to be related to the present day Glomus genus—obligate biotrophs that invade plant cells to form a multilobed hyphal structure called an arbuscule (Fig. 12.1). Across the surface area of the arbuscule, a constant flux of nutrients (e.g., nitrogen, phosphorus, sulfur) from the fungus is exchanged for plant-based sugars

    Chickpea shows genotype-specific nodulation responses across soil nitrogen environment and root disease resistance categories

    Get PDF
    Background: The ability of chickpea to obtain sufficient nitrogen via its symbiotic relationship with Mesorhizobium ciceri is of critical importance in supporting growth and grain production. A number of factors can affect this symbiotic relationship including abiotic conditions, plant genotype, and disruptions to host signalling/perception networks. In order to support improved nodule formation in chickpea, we investigated how plant genotype and soil nutrient availability affect chickpea nodule formation and nitrogen fixation. Further, using transcriptomic profiling, we sought to identify gene expression patterns that characterize highly nodulated genotypes. Results: A study involving six chickpea varieties demonstrated large genotype by soil nitrogen interaction effects on nodulation and further identified agronomic traits of genotypes (such as shoot weight) associated with high nodulation. We broadened our scope to consider 29 varieties and breeding lines to examine the relationship between soilborne disease resistance and the number of nodules developed and real-time nitrogen fixation. Results of this larger study supported the earlier genotype specific findings, however, disease resistance did not explain differences in nodulation across genotypes. Transcriptional profiling of six chickpea genotypes indicates that genes associated with signalling, N transport and cellular localization, as opposed to genes associated with the classical nodulation pathway, are more likely to predict whether a given genotype will exhibit high levels of nodule formation. Conclusions: This research identified a number of key abiotic and genetic factors affecting chickpea nodule development and nitrogen fixation. These findings indicate that an improved understanding of genotype-specific factors affecting chickpea nodule induction and function are key research areas necessary to improving the benefits of rhizobial symbiosis in chickpea

    Blurred boundaries : lifestyle lessons from ectomycorrhizal fungal genomes

    No full text
    Soils contain a multitude of fungi with vastly divergent lifestyles ranging from saprotrophic to mutualistic and pathogenic. The recent release of many fungal genomes has led to comparative studies that consider the extent to which these lifestyles are encoded in the genome. The genomes of the symbiotic fungi Laccaria bicolor and Tuber melanosporum are proving especially useful in characterizing the genetic foundation of mutualistic symbiosis. New insights gleaned from these genomes, as compared to their saprotrophic and pathogenic cousins, have helped to redefine and shape our understanding of the nature of the symbiotic lifestyle. Here we detail the current state of research into this complex relationship and discuss avenues for future exploration

    Reconsidering mutualistic plant-fungal interactions through the lens of effector biology

    No full text
    Mutualistic mycorrhizal plant-fungal interactions have shaped the evolution of plant life on land. In these intimate associations, fungal hyphae grow invasively within plant tissues. Despite this invasion, these mycorrhizal fungi are not repulsed leading to a great deal of research focused on the signals exchanged between mutualistic fungi and their host plants in an effort to understand how these relationships are established. In this review, we focus on one type of signal used by mutualistic fungi during symbiosis: effector proteins. These small secreted proteins have recently been found to be used by a range of beneficial fungi to alter the physiological status of the plant host such that symbiosis is favoured. We discuss how the role of these novel proteins has altered our vision of how the 'mutualistic' lifestyle evolved in fungi: rather than being perceived as beneficial by their plant hosts, these microbes currently viewed as 'beneficial' may actually be overcoming the defences of their plant hosts in a mechanism originally thought to be unique to pathogenic microbes
    • …
    corecore