196 research outputs found

    Genome-Wide Analysis of Binding Sites and Direct Target Genes of the Orphan Nuclear Receptor NR2F1/COUP-TFI

    Get PDF
    Identification of bona fide direct nuclear receptor gene targets has been challenging but essential for understanding regulation of organismal physiological processes.We describe a methodology to identify transcription factor binding sites and target genes in vivo by intersecting microarray data, computational binding site queries, and evolutionary conservation. We provide detailed experimental validation of each step and, as a proof of principle, utilize the methodology to identify novel direct targets of the orphan nuclear receptor NR2F1 (COUP-TFI). The first step involved validation of microarray gene expression profiles obtained from wild-type and COUP-TFI(-/-) inner ear tissues. Secondly, we developed a bioinformatic tool to search for COUP-TFI DNA binding sites in genomes, using a classification-type Hidden Markov Model trained with 49 published COUP-TF response elements. We next obtained a ranked list of candidate in vivo direct COUP-TFI targets by integrating the microarray and bioinformatics analyses according to the degree of binding site evolutionary conservation and microarray statistical significance. Lastly, as proof-of-concept, 5 specific genes were validated for direct regulation. For example, the fatty acid binding protein 7 (Fabp7) gene is a direct COUP-TFI target in vivo because: i) we identified 2 conserved COUP-TFI binding sites in the Fabp7 promoter; ii) Fapb7 transcript and protein levels are significantly reduced in COUP-TFI(-/-) tissues and in MEFs; iii) chromatin immunoprecipitation demonstrates that COUP-TFI is recruited to the Fabp7 promoter in vitro and in vivo and iv) it is associated with active chromatin having increased H3K9 acetylation and enrichment for CBP and SRC-1 binding in the newborn brain.We have developed and validated a methodology to identify in vivo direct nuclear receptor target genes. This bioinformatics tool can be modified to scan for response elements of transcription factors, cis-regulatory modules, or any flexible DNA pattern

    Overview of the Kepler Science Processing Pipeline

    Full text link
    The Kepler Mission Science Operations Center (SOC) performs several critical functions including managing the ~156,000 target stars, associated target tables, science data compression tables and parameters, as well as processing the raw photometric data downlinked from the spacecraft each month. The raw data are first calibrated at the pixel level to correct for bias, smear induced by a shutterless readout, and other detector and electronic effects. A background sky flux is estimated from ~4500 pixels on each of the 84 CCD readout channels, and simple aperture photometry is performed on an optimal aperture for each star. Ancillary engineering data and diagnostic information extracted from the science data are used to remove systematic errors in the flux time series that are correlated with these data prior to searching for signatures of transiting planets with a wavelet-based, adaptive matched filter. Stars with signatures exceeding 7.1 sigma are subjected to a suite of statistical tests including an examination of each star's centroid motion to reject false positives caused by background eclipsing binaries. Physical parameters for each planetary candidate are fitted to the transit signature, and signatures of additional transiting planets are sought in the residual light curve. The pipeline is operational, finding planetary signatures and providing robust eliminations of false positives.Comment: 8 pages, 3 figure

    Discovery and Rossiter-McLaughlin Effect of Exoplanet Kepler-8b

    Get PDF
    We report the discovery and the Rossiter-McLaughlin effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius RP = 1.419 RJ and a mass, MP = 0.60 MJ, yielding a density of 0.26 g cm^-3, among the lowest density planets known. The orbital period is P = 3.523 days and orbital semima jor axis is 0.0483+0.0006/-0.0012 AU. The star has a large rotational v sin i of 10.5 +/- 0.7 km s^-1 and is relatively faint (V = 13.89 mag), both properties deleterious to precise Doppler measurements. The velocities are indeed noisy, with scatter of 30 m s^-1, but exhibit a period and phase consistent with the planet implied by the photometry. We securely detect the Rossiter-McLaughlin effect, confirming the planet's existence and establishing its orbit as prograde. We measure an inclination between the projected planetary orbital axis and the projected stellar rotation axis of lambda = -26.9 +/- 4.6 deg, indicating a moderate inclination of the planetary orbit. Rossiter-McLaughlin measurements of a large sample of transiting planets from Kepler will provide a statistically robust measure of the true distribution of spin-orbit orientations for hot jupiters in general.Comment: 26 pages, 8 figures, 2 tables; In preparation for submission to the Astrophysical Journa

    Comparison of On-Site Versus Remote Mobile Device Support in the Framingham Heart Study Using the Health eHeart Study for Digital Follow-up: Randomized Pilot Study Set Within an Observational Study Design

    Get PDF
    BACKGROUND: New electronic cohort (e-Cohort) study designs provide resource-effective methods for collecting participant data. It is unclear if implementing an e-Cohort study without direct, in-person participant contact can achieve successful participation rates. OBJECTIVE: The objective of this study was to compare 2 distinct enrollment methods for setting up mobile health (mHealth) devices and to assess the ongoing adherence to device use in an e-Cohort pilot study. METHODS: We coenrolled participants from the Framingham Heart Study (FHS) into the FHS-Health eHeart (HeH) pilot study, a digital cohort with infrastructure for collecting mHealth data. FHS participants who had an email address and smartphone were randomized to our FHS-HeH pilot study into 1 of 2 study arms: remote versus on-site support. We oversampled older adults (age \u3e /=65 years), with a target of enrolling 20% of our sample as older adults. In the remote arm, participants received an email containing a link to enrollment website and, upon enrollment, were sent 4 smartphone-connectable sensor devices. Participants in the on-site arm were invited to visit an in-person FHS facility and were provided in-person support for enrollment and connecting the devices. Device data were tracked for at least 5 months. RESULTS: Compared with the individuals who declined, individuals who consented to our pilot study (on-site, n=101; remote, n=93) were more likely to be women, highly educated, and younger. In the on-site arm, the connection and initial use of devices was \u3e /=20% higher than the remote arm (mean percent difference was 25% [95% CI 17-35] for activity monitor, 22% [95% CI 12-32] for blood pressure cuff, 20% [95% CI 10-30] for scale, and 43% [95% CI 30-55] for electrocardiogram), with device connection rates in the on-site arm of 99%, 95%, 95%, and 84%. Once connected, continued device use over the 5-month study period was similar between the study arms. CONCLUSIONS: Our pilot study demonstrated that the deployment of mobile devices among middle-aged and older adults in the context of an on-site clinic visit was associated with higher initial rates of device use as compared with offering only remote support. Once connected, the device use was similar in both groups

    Designing an automated clinical decision support system to match clinical practice guidelines for opioid therapy for chronic pain

    Get PDF
    Abstract Background Opioid prescribing for chronic pain is common and controversial, but recommended clinical practices are followed inconsistently in many clinical settings. Strategies for increasing adherence to clinical practice guideline recommendations are needed to increase effectiveness and reduce negative consequences of opioid prescribing in chronic pain patients. Methods Here we describe the process and outcomes of a project to operationalize the 2003 VA/DOD Clinical Practice Guideline for Opioid Therapy for Chronic Non-Cancer Pain into a computerized decision support system (DSS) to encourage good opioid prescribing practices during primary care visits. We based the DSS on the existing ATHENA-DSS. We used an iterative process of design, testing, and revision of the DSS by a diverse team including guideline authors, medical informatics experts, clinical content experts, and end-users to convert the written clinical practice guideline into a computable algorithm to generate patient-specific recommendations for care based upon existing information in the electronic medical record (EMR), and a set of clinical tools. Results The iterative revision process identified numerous and varied problems with the initially designed system despite diverse expert participation in the design process. The process of operationalizing the guideline identified areas in which the guideline was vague, left decisions to clinical judgment, or required clarification of detail to insure safe clinical implementation. The revisions led to workable solutions to problems, defined the limits of the DSS and its utility in clinical practice, improved integration into clinical workflow, and improved the clarity and accuracy of system recommendations and tools. Conclusions Use of this iterative process led to development of a multifunctional DSS that met the approval of the clinical practice guideline authors, content experts, and clinicians involved in testing. The process and experiences described provide a model for development of other DSSs that translate written guidelines into actionable, real-time clinical recommendations.http://deepblue.lib.umich.edu/bitstream/2027.42/78267/1/1748-5908-5-26.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/2/1748-5908-5-26.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/3/1748-5908-5-26-S3.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/4/1748-5908-5-26-S2.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/5/1748-5908-5-26-S1.TIFFPeer Reviewe

    Intra- and inter-individual genetic differences in gene expression

    Get PDF
    Genetic variation is known to influence the amount of mRNA produced by a gene. Given that the molecular machines control mRNA levels of multiple genes, we expect genetic variation in the components of these machines would influence multiple genes in a similar fashion. In this study we show that this assumption is correct by using correlation of mRNA levels measured independently in the brain, kidney or liver of multiple, genetically typed, mice strains to detect shared genetic influences. These correlating groups of genes (CGG) have collective properties that account for 40-90% of the variability of their constituent genes and in some cases, but not all, contain genes encoding functionally related proteins. Critically, we show that the genetic influences are essentially tissue specific and consequently the same genetic variations in the one animal may up-regulate a CGG in one tissue but down-regulate the same CGG in a second tissue. We further show similarly paradoxical behaviour of CGGs within the same tissues of different individuals. The implication of this study is that this class of genetic variation can result in complex inter- and intra-individual and tissue differences and that this will create substantial challenges to the investigation of phenotypic outcomes, particularly in humans where multiple tissues are not readily available.

&#xa
    corecore