97 research outputs found

    The New House of the Region of Hannover - Building Energy Efficient in a Public Private Partnership

    Get PDF
    Public Private Partnerships are an increasingly popular approach to carry out public infra-structure projects. PPPs aim at reducing costs and risk and improving service and quality by using private expertise and management potential

    Periodic heat production by oscillating glycolysis in a cytoplasmic medium extracted from yeast

    Get PDF
    AbstractThe rate of heat production in a periodically glycolysing cell-free cytoplasmic medium extracted from yeast Saccharomyces cerevisiae is measured with a batch calorimeter. The rate exhibits periodic variations of approx. 10% of the average heat production rate of about 54 mJml per minute. From this rate and the enthalpy change fro glycolysis a glucose degradation rate of 0.43 mMming is calculated. The value fits into the ‘oscillatory window’ determined by a glucose injection technique

    Doppler Effect of Nonlinear Waves and Superspirals in Oscillatory Media

    Full text link
    Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-diffusion medium provides an example, where waves originate from a source exhibiting a back-and-forth movement in radial direction. The periodic motion of the source induces a Doppler effect that causes a modulation in wavelength and amplitude of the waves (``superspiral''). Using the complex Ginzburg-Landau equation, we show that waves subject to a convective Eckhaus instability can exhibit monotonous growth or decay as well as saturation of these modulations away from the source depending on the perturbation frequency. Our findings allow a consistent interpretation of recent experimental observations concerning superspirals and their decay to spatio-temporal chaos.Comment: 4 pages, 4 figure

    Markov analysis of stochastic resonance in a periodically driven integrate-fire neuron

    Full text link
    We model the dynamics of the leaky integrate-fire neuron under periodic stimulation as a Markov process with respect to the stimulus phase. This avoids the unrealistic assumption of a stimulus reset after each spike made in earlier work and thus solves the long-standing reset problem. The neuron exhibits stochastic resonance, both with respect to input noise intensity and stimulus frequency. The latter resonance arises by matching the stimulus frequency to the refractory time of the neuron. The Markov approach can be generalized to other periodically driven stochastic processes containing a reset mechanism.Comment: 23 pages, 10 figure

    Helicoidal instability of a scroll vortex in three-dimensional reaction-diffusion systems

    Full text link
    We study the dynamics of scroll vortices in excitable reaction-diffusion systems analytically and numerically. We demonstrate that intrinsic three-dimensional instability of a straight scroll leads to the formation of helicoidal structures. This behavior originates from the competition between the scroll curvature and unstable core dynamics. We show that the obtained instability persists even beyond the meander core instability of two-dimensional spiral wave.Comment: 4 pages, 5 figures, revte

    (0,2) Deformations of Linear Sigma Models

    Full text link
    We study (0,2) deformations of a (2,2) supersymmetric gauged linear sigma model for a Calabi-Yau hypersurface in a Fano toric variety. In the non-linear sigma model these correspond to some of the holomorphic deformations of the tangent bundle on the hypersurface. Combinatorial formulas are given for the number of these deformations, and we show that these numbers are exchanged by mirror symmetry in a subclass of the models.Comment: 35 pages; uses xy-fig; typos fixed, acknowledgments adde

    Theory of spiral wave dynamics in weakly excitable media: asymptotic reduction to a kinematic model and applications

    Full text link
    In a weakly excitable medium, characterized by a large threshold stimulus, the free end of an isolated broken plane wave (wave tip) can either rotate (steadily or unsteadily) around a large excitable core, thereby producing a spiral pattern, or retract causing the wave to vanish at boundaries. An asymptotic analysis of spiral motion and retraction is carried out in this weakly excitable large core regime starting from the free-boundary limit of the reaction-diffusion models, valid when the excited region is delimited by a thin interface. The wave description is shown to naturally split between the tip region and a far region that are smoothly matched on an intermediate scale. This separation allows us to rigorously derive an equation of motion for the wave tip, with the large scale motion of the spiral wavefront slaved to the tip. This kinematic description provides both a physical picture and exact predictions for a wide range of wave behavior, including: (i) steady rotation (frequency and core radius), (ii) exact treatment of the meandering instability in the free-boundary limit with the prediction that the frequency of unstable motion is half the primary steady frequency (iii) drift under external actions (external field with application to axisymmetric scroll ring motion in three-dimensions, and spatial or/and time-dependent variation of excitability), and (iv) the dynamics of multi-armed spiral waves with the new prediction that steadily rotating waves with two or more arms are linearly unstable. Numerical simulations of FitzHug-Nagumo kinetics are used to test several aspects of our results. In addition, we discuss the semi-quantitative extension of this theory to finite cores and pinpoint mathematical subtleties related to the thin interface limit of singly diffusive reaction-diffusion models
    • …
    corecore