43 research outputs found

    Standardization of the collection of exhaled breath condensate and exhaled breath aerosol using a feedback regulated sampling device

    Get PDF
    Exhaled breath condensate (EBC) and associated exhaled breath aerosols (EBA) are valuable non-invasive biological media used for the quantification of biomarkers. EBC contains exhaled water vapor, soluble gas-phase (polar) organic compounds, ionic species, plus other species including semi- and non-volatile organic compounds, proteins, cell fragments, DNA, dissolved inorganic compounds, ions, and microbiota (bacteria and viruses) dissolved in the co-collected EBA. EBC is collected from subjects who breathe 'normally' through a chilled tube assembly for approximately 10 min and is then harvested into small vials for analysis. Aerosol filters without the chilled tube assembly are also used to separately collect EBA. Unlike typical gas-phase breath samples used for environmental and clinical applications, the constituents of EBC and EBA are not easily characterized by total volume or carbon dioxide (CO2) concentration, because the gas-phase is vented. Furthermore, EBC and associated EBA are greatly affected by breathing protocol, more specifically, depth of inhalation and expelled breath velocity. We have tested a new instrument developed by Loccioni Gruppa Humancare (Ancona, Italy) for implementation of EBC collection from human subjects to assess EBC collection parameters. The instrument is the first EBC collection device that provides instantaneous visual feedback to the subjects to control breathing patterns. In this report we describe the operation of the instrument, and present an overview of performance and analytical applications

    Systemic Exposure to PAHs and Benzene in Firefighters Suppressing Controlled Structure Fires

    Get PDF
    Turnout gear provides protection against dermal exposure to contaminants during firefighting; however, the level of protection is unknown. We explored the dermal contribution to the systemic dose of polycyclic aromatic hydrocarbons (PAHs) and other aromatic hydrocarbons in firefighters during suppression and overhaul of controlled structure burns. The study was organized into two rounds, three controlled burns per round, and five firefighters per burn. The firefighters wore new or laundered turnout gear tested before each burn to ensure lack of PAH contamination. To ensure that any increase in systemic PAH levels after the burn was the result of dermal rather than inhalation exposure, the firefighters did not remove their self-contained breathing apparatus until overhaul was completed and they were >30 m upwind from the burn structure. Specimens were collected before and at intervals after the burn for biomarker analysis. Urine was analyzed for phenanthrene equivalents using enzyme-linked immunosorbent assay and a benzene metabolite (s-phenylmercapturic acid) using liquid chromatography/tandem mass spectrometry; both were adjusted by creatinine. Exhaled breath collected on thermal desorption tubes was analyzed for PAHs and other aromatic hydrocarbons using gas chromatography/mass spectrometry. We collected personal air samples during the burn and skin wipe samples (corn oil medium) on several body sites before and after the burn. The air and wipe samples were analyzed for PAHs using a liquid chromatography with photodiode array detection. We explored possible changes in external exposures or biomarkers over time and the relationships between these variables using non-parametric sign tests and Spearman tests, respectively. We found significantly elevated (P < 0.05) post-exposure breath concentrations of benzene compared with pre-exposure concentrations for both rounds. We also found significantly elevated post-exposure levels of PAHs on the neck compared with pre-exposure levels for round 1. We found statistically significant positive correlations between external exposures (i.e. personal air concentrations of PAHs) and biomarkers (i.e. change in urinary PAH metabolite levels in round 1 and change in breath concentrations of benzene in round 2). The results suggest that firefighters wearing full protective ensembles absorbed combustion products into their bodies. The PAHs most likely entered firefighters’ bodies through their skin, with the neck being the primary site of exposure and absorption due to the lower level of dermal protection afforded by hoods. Aromatic hydrocarbons could have been absorbed dermally during firefighting or inhaled during the doffing of gear that was off-gassing contaminants.National Institute for Occupational Safety and Health (NIOSH) by intramural award under the National Occupational Research AgendaOpe

    Dataset of breath research manuscripts curated using PubMed search strings from 1995–2016

    No full text
    The data contained in this article are PubMed search strings and search string builders used to curate breath research manuscripts published from 1995–2016 and the respective number of articles found that satisfied the search requirements for selected categories. Breath sampling represents a non-invasive technique that has gained usefulness for public health, clinical, diagnostic, and environmental exposure assessment applications over the years. This data article includes search strings that were utilized to retrieve publications through the PubMed database for different breath research-related topics that were related to the analysis of exhaled breath, exhaled breath condensate (EBC), and exhaled breath aerosol (EBA) as well as the analysis of cellular headspace. Manuscripts were curated for topics including EBC, EBA, Direct MS, GC–MS, LC-MS, alcohol, and sensors. A summary of the number of papers published per year for the data retrieved using each of the search strings is also included. These data can be utilized to discern trends in the number of breath research publications in each of the different topics over time. A supplementary Appendix A containing the titles, author lists, journal names, publication dates, PMID numbers, and EntrezUID numbers for each of the journal articles curated using the finalized search strings for the seven breath research-related topics can also be found within this article. The selected manuscripts can be used to explore the impact that breath research has had on expanding the scientific knowledge in each of the investigated topics. Keywords: Exhaled breath, Exhaled breath condensate (EBC), Exhaled breath aerosol (EBA), Mass spectrometry, Sensors, Immunochemistry, Public health, Clinical diagnosi

    Advances in proton transfer reaction mass spectrometry (PTR-MS): Applications in exhaled breath analysis, food science, and atmospheric chemistry

    No full text
    This report discusses advances in instrumentation based on soft chemical ionization followed by high-resolution real-time mass spectrometry (HR-MS), specifically in relation to developments in proton transfer reaction mass spectrometry (PTR-MS) technology. It is part of a Journal of Breath Research series that describes recent technical developments in breath related research relevant to human health and analytical chemistry from scientific conferences. Herein we discuss the current state of PTR-MS as presented at the 8th International Conference on Proton Transfer Reaction – Mass Spectrometry held in Innsbruck, Austria, February 2–8, 2019, attended by the authors
    corecore