32 research outputs found

    LRH-1/NR5A2 interacts with the glucocorticoid receptor to regulate glucocorticoid resistance

    Full text link
    Nuclear receptors are transcription factors with important functions in a variety of physiological and pathological processes. Targeting glucocorticoid receptor (GR) activity using glucocorticoids is a cornerstone in the treatment of patients with T cell acute lymphoblastic leukemia (T-ALL), and resistance to GC-induced cell death is associated with poor outcome and a high risk for relapse. Next to ligand-binding, heterodimerization with other transcription factors presents an important mechanism for the regulation of GR activity. Here, we describe a GC-induced direct association of the Liver Receptor Homolog-1 (LRH-1) with the GR in the nucleus, which results in reciprocal inhibition of transcriptional activity. Pharmacological and molecular interference with LRH-1 impairs proliferation and survival in T-ALL and causes a profound sensitization to GC-induced cell death, even in GC-resistant T-ALL. Our data illustrate that direct interaction between GR and LRH-1 critically regulates glucocorticoid sensitivity in T-ALL opening up new perspectives for developing innovative therapeutic approaches to treat GC-resistant T-ALL

    Influence of ABCA1 and ABCA7 on the lipid microenvironment of the plasma membrane

    Get PDF
    Der ABC-Transporter ABCA1 ist unmittelbar in die zellulĂ€re Lipidhomeostasie einbezogen, in dem er die Freisetzung von Cholesterol an plasmatische Rezeptoren, wie ApoA-I, vermittelt. Trotz intensiver Untersuchungen ist dieser molekulare Mechanismus nicht verstanden. Verschiedene Studien deuten daraufhin, dass durch die AktivitĂ€t von ABCA1 bedingte VerĂ€nderungen in der Lipidphase der Ă€ußeren HĂ€lfte der Plasmamembran (PM) wichtig fĂŒr die Freisetzung des Cholesterols sind. In der vorliegenden Arbeit wird die Lipidumgebung von ABCA1 in der PM lebender SĂ€ugetierzellen unter Anwendung der Fluoreszenzlebenszeitmikroskopie von fluoreszierenden Lipidsonden untersucht. Es wurde eine breite Verteilung der Fluoreszenzlebenszeiten der Sonden gefunden, die sensitiv gegenĂŒber VerĂ€nderungen der lateralen und transversalen Organisation der Lipide ist. Im Einklang mit Studien an riesengroßen unilamellaren Vesikeln und Plasmamembranvesikeln weisen unsere Ergebnisse die Existenz einer grĂ¶ĂŸeren Vielfalt submikroskopischer LipiddomĂ€nen auf. Die FLIM-Untersuchungen an ABCA1 exprimierenden HeLa-Zellen weisen eine die Lipidphase destabilisierende Funktion des Transportes aus. Dieses wurde unterstĂŒtzt durch die Lipidanalyse von Fraktionen der PM. Auf der Basis unserer Untersuchungen und frĂŒheren Daten stellen wir die Hypothese auf, dass die Exponierung von Phosphatidylserin (PS) auf der ZelloberflĂ€che ein zentrales Ereignis der ABCA1 bedingten VerĂ€nderungen ist. Allerdings zeigen vergleichende Studien an ABCA7 exprimierenden Zellen, dass dies nicht ausreicht, um die ABCA1 verursachten VerĂ€nderungen in der Lipidpackung der PM zu erklĂ€ren. Unsere Ergebnisse beweisen, dass die FĂ€higkeit von ABCA1, den Cholesterolefflux zu vermitteln, auf durch den Transporter bedingte VerĂ€nderungen in der LP der PM zurĂŒckzufĂŒhren sind, die unabhĂ€ngig von der Bindung von ApoA-1 sind und dieser vorausgehen. Diese VerĂ€nderungen sind notwendig fĂŒr die Lipidierung von ApoA-1 und der Generierung von HDL-Partikeln.The ABCA1 transporter organizes cellular lipid homeostasis by promoting the release of cholesterol to plasmatic acceptors such as ApoA-I. Despite intensive investigation, the molecular mechanism of such a process has not yet been clarified. In the present study we report on the analysis of the ABCA1 lipid microenvironment at the plasma membrane of living cells, by a novel approach based on fluorescence lifetime imaging microscopy (FLIM). In the plasma membrane of mammalian cells, a broad fluorescence lifetime distribution sensitive to treatments interfering with the membrane lateral and transbilayer organization was found. In agreement with investigations in giant unilamellar vesicles and giant plasma membrane vesicles, our results are consistent with the existence of a large variety of submicroscopic lipid domains. Based on that, FLIM in HeLa cells expressing ABCA1 revealed the destabilizing function of the transporter on the lipid arrangement at the membrane, indicating that lipid packing was a primary target of ABCA1 activity. This was corroborated by the analysis of plasma membrane fractions isolated by density fractionation. On the basis of our analysis and previous data, we speculate that the exposure of phosphatidylserine on the cell surface is a central event for ABCA1-dependent modifications. However, a comparative study of cells expressing ABCA7, the member of the ABCA subfamily with the highest homology to ABCA1, revealed that exposure of PS alone cannot account for the detected effects. Collectively, our data suggest that the ability of ABCA1 to promote cholesterol efflux is independent and precedes its actual binding to ApoA-I. Rather, ABCA1-induced plasma membrane modifications are necessary for the lipidation of ApoA-I and the generation of high density lipoprotein particles

    Functional implications of the influence of ABCA1 on lipid microenvironment at the plasma membrane: a biophysical study.

    No full text
    International audienceThe ABCA1 transporter orchestrates cellular lipid homeostasis by promoting the release of cholesterol to plasmatic acceptors. The molecular mechanism is, however, unknown. We report here on the biophysical analysis in living HeLa cells of the ABCA1 lipid microenvironment at the plasma membrane. The modifications of membrane attributes induced by ABCA1 were assessed at both the outer and inner leaflet by monitoring either the lifetime of membrane inserted fluorescent lipid analogues by fluorescence lifetime imaging microscopy (FLIM) or, respectively, the membrane translocation of cationic sensors. Analysis of the partitioning of dedicated probes in plasma membrane blebs vesiculated from these cells allowed visualization of ABCA1 partitioning into the liquid disordered-like phase and corroborated the idea that ABCA1 destabilizes the lipid arrangement at the membrane. Specificity was demonstrated by comparison with cells expressing an inactive transporter. The physiological relevance of these modifications was finally demonstrated by the reduced membrane mobility and function of transferrin receptors under the influence of an active ABCA1. Collectively, these data assess that the control of both transversal and lateral lipid distribution at the membrane is the primary function of ABCA1 and positions the effluxes of cholesterol from cell membranes downstream to the redistribution of the sterol into readily extractable membrane pools
    corecore