263 research outputs found
Bottom-up assembly of functional intracellular synthetic organelles by droplet-based microfluidics
Bottom-up synthetic biology has directed most efforts toward the construction of artificial compartmentalized systems that recreate living cell functions in their mechanical, morphological, or metabolic characteristics. However, bottom-up synthetic biology also offers great potential to study subcellular structures like organelles. Because of their intricate and complex structure, these key elements of eukaryotic life forms remain poorly understood. Here, the controlled assembly of lipid enclosed, organelle-like architectures is explored by droplet-based microfluidics. Three types of giant unilamellar vesicles (GUVs)-based synthetic organelles (SOs) functioning within natural living cells are procedured: (A) synthetic peroxisomes supporting cellular stress-management, mimicking an organelle innate to the host cell by using analogous enzymatic modules; (B) synthetic endoplasmic reticulum (ER) as intracellular light-responsive calcium stores involved in intercellular calcium signalling, mimicking an organelle innate to the host cell but utilizing a fundamentally different mechanism; and (C) synthetic magnetosomes providing eukaryotic cells with a magnetotactic sense, mimicking an organelle that is not natural to the host cell but transplanting its functionality from other branches of the phylogenetic tree. Microfluidic assembly of functional SOs paves the way for high-throughput generation of versatile intracellular structures implantable into living cells. This in-droplet SO design may support or expand cellular functionalities in translational nanomedicine
A new electromagnetic mode in graphene
A new, weakly damped, {\em transverse} electromagnetic mode is predicted in
graphene. The mode frequency lies in the window
, where is the chemical potential, and can be
tuned from radiowaves to the infrared by changing the density of charge
carriers through a gate voltage.Comment: 5 pages, 4 figure
Response Function of the Fractional Quantized Hall State on a Sphere II: Exact Diagonalization
We study the excitation spectra and the dynamical structure factor of quantum
Hall states in a finite size system through exact diagonalization. Comparison
is made between the numerical results so obtained and the analytic results
obtained from a modified RPA in the preceding companion paper. We find good
agreement between the results at low energies.Comment: 22 pages (REVTeX 3.0). 10 figures available on request. Complete
postscript file (including figures) for this paper are available on the World
Wide Web at http://cmtw.harvard.edu/~simon/ ; Preprint number HU-CMT-94S0
Magnetoresistance of nondegenerate quantum electron channels formed on the surface of superfluid helium
Transport properties of quasi-one-dimensional nondegenerate quantum wires
formed on the surface of liquid helium in the presence of a normal magnetic
field are studied using the momentum balance equation method and the memory
function formalism. The interaction with both kinds of scatterers available
(vapor atoms and capillary wave quanta) is considered. We show that unlike
classical wires, quantum nondegenerate channels exhibit strong
magnetoresistance which increases with lowering the temperature.Comment: 8 pages, 7 figure
Tunneling into a two-dimensional electron system in a strong magnetic field
We investigate the properties of the one-electron Green's function in an
interacting two-dimensional electron system in a strong magnetic field, which
describes an electron tunneling into such a system. From finite-size
diagonalization, we find that its spectral weight is suppressed near zero
energy, reaches a maximum at an energy of about , and
decays exponentially at higher energies. We propose a theoretical model to
account for the low-energy behavior. For the case of Coulomb interactions
between the electrons, at even-denominator filling factors such as ,
we predict that the spectral weight varies as , for
Enhancement of tunneling from a correlated 2D electron system by a many-electron Mossbauer-type recoil in a magnetic field
We consider the effect of electron correlations on tunneling from a 2D
electron layer in a magnetic field parallel to the layer. A tunneling electron
can exchange its momentum with other electrons, which leads to an exponential
increase of the tunneling rate compared to the single-electron approximation.
Explicit results are obtained for a Wigner crystal. They provide a qualitative
and quantitative explanation of the data on electrons on helium. We also
discuss tunneling in semiconductor heterostructures.Comment: published version, 4 pages, 2 figures, RevTeX 3.
Low-Temperature Mobility of Surface Electrons and Ripplon-Phonon Interaction in Liquid Helium
The low-temperature dc mobility of the two-dimensional electron system
localized above the surface of superfluid helium is determined by the slowest
stage of the longitudinal momentum transfer to the bulk liquid, namely, by the
interaction of surface and volume excitations of liquid helium, which rapidly
decreases with temperature. Thus, the temperature dependence of the
low-frequency mobility is \mu_{dc} = 8.4x10^{-11}n_e T^{-20/3} cm^4 K^{20/3}/(V
s), where n_e is the surface electron density. The relation
T^{20/3}E_\perp^{-3} << 2x10^{-7} between the pressing electric field (in
kV/cm) and temperature (in K) and the value \omega < 10^8 T^5 K^{-5}s^{-1} of
the driving-field frequency have been obtained, at which the above effect can
be observed. In particular, E_\perp = 1 kV/cm corresponds to T < 70 mK and
\omega/2\pi < 30 Hz.Comment: 4 pages, 1 figur
- …