113 research outputs found

    Selective SLAM/CD150 Receptor-Detargeting of Canine Distemper Virus.

    Get PDF
    The envelope attachment (H)-protein of canine distemper virus (CDV) mediates receptor engagement and fusion-triggering; two key functions in viral cell entry and spread. Signaling lymphocyte activation molecule (SLAM) and Nectin-4 (N4) act as morbilliviral entry receptors in immune and epithelial cells, respectively, which defines very similar pathogeneses. High incidence of brain disorders is however unique to CDV. The wild-type CDV-A75/17 strain (A75) preferentially infects glial cells and spreads from astrocyte-to-astrocyte without inducing massive fusion events, despite the fact that SLAM and N4 expressions remained below detection levels. To investigate whether an A75 H-microdomain required to interact with SLAM may additionally contribute to promote viral spread between astrocytes, we initially engineered a novel A75 H-protein variant (546-SYT/RNR-548) that lost SLAM-binding property and, consequently, lacked fusion-triggering activity specifically in SLAM-expressing cells. Collectively, this approach provides the molecular tool to decipher the role of the selected H-microdomain in supporting A75-spread in glial cells

    Canine distemper virus persistence in demyelinating encephalitis by swift intracellular cell-to-cell spread in astrocytes is controlled by the viral attachment protein

    Get PDF
    The mechanism of viral persistence, the driving force behind the chronic progression of inflammatory demyelination in canine distemper virus (CDV) infection, is associated with non-cytolytic viral cell-to-cell spread. Here, we studied the molecular mechanisms of viral spread of a recombinant fluorescent protein-expressing virulent CDV in primary canine astrocyte cultures. Time-lapse video microscopy documented that CDV spread was very efficient using cell processes contacting remote target cells. Strikingly, CDV transmission to remote cells could occur in less than 6h, suggesting that a complete viral cycle with production of extracellular free particles was not essential in enabling CDV to spread in glial cells. Titration experiments and electron microscopy confirmed a very low CDV particle production despite higher titers of membrane-associated viruses. Interestingly, confocal laser microscopy and lentivirus transduction indicated expression and functionality of the viral fusion machinery, consisting of the viral fusion (F) and attachment (H) glycoproteins, at the cell surface. Importantly, using a single-cycle infectious recombinant H-knockout, H-complemented virus, we demonstrated that H, and thus potentially the viral fusion complex, was necessary to enable CDV spread. Furthermore, since we could not detect CD150/SLAM expression in brain cells, the presence of a yet non-identified glial receptor for CDV was suggested. Altogether, our findings indicate that persistence in CDV infection results from intracellular cell-to-cell transmission requiring the CDV-H protein. Viral transfer, happening selectively at the tip of astrocytic processes, may help the virus to cover long distances in the astroglial network, "outrunning” the host's immune response in demyelinating plaques, thus continuously eliciting new lesion

    Efficient Recovery of Attenuated Canine Distemper Virus from cDNA.

    Get PDF
    To provide insights into the biology of the attenuated canine distemper virus (CDV) Onderstepoort (OP) strain (large plaque forming variant), design next-generation multivalent vaccines, or further investigate its promising potential as an oncolytic vector, we employed contemporary modifications to establish an efficient OP-CDV-based reverse genetics platform. Successful viral rescue was obtained however only upon recovery of a completely conserved charged residue (V13E) residing at the N-terminal region of the large protein (L). Although L-V13 and L-V13E did not display drastic differences in cellular localization and physical interaction with P, efficient polymerase complex (P+L) activity was recorded only with L-V13E. Interestingly, grafting mNeonGreen to the viral N protein via a P2A ribosomal skipping sequence (OPneon) and its derivative V-protein-knockout variant (OPneon-Vko) exhibited delayed replication kinetics in cultured cells. Collectively, we established an efficient OP-CDV-based reverse genetics system that enables the design of various strategies potentially contributing to veterinary medicine and research

    Oligomerization and Cell Egress Controlled by Two Microdomains of Canine Distemper Virus Matrix Protein.

    Get PDF
    The multimeric matrix (M) protein of clinically relevant paramyxoviruses orchestrates assembly and budding activity of viral particles at the plasma membrane (PM). We identified within the canine distemper virus (CDV) M protein two microdomains, potentially assuming α-helix structures, which are essential for membrane budding activity. Remarkably, while two rationally designed microdomain M mutants (E89R, microdomain 1 and L239D, microdomain 2) preserved proper folding, dimerization, interaction with the nucleocapsid protein, localization at and deformation of the PM, the virus-like particle formation, as well as production of infectious virions (as monitored using a membrane budding-complementation system), were, in sharp contrast, strongly impaired. Of major importance, raster image correlation spectroscopy (RICS) revealed that both microdomains contributed to finely tune M protein mobility specifically at the PM. Collectively, our data highlighted the cornerstone membrane budding-priming activity of two spatially discrete M microdomains, potentially by coordinating the assembly of productive higher oligomers at the PM.IMPORTANCE Despite the availability of efficient vaccines, morbilliviruses (e.g., canine distemper virus [CDV] and measles virus [MeV]) still cause major health impairments. Although antivirals may support vaccination campaigns, approved inhibitors are to date still lacking. Targeting late stages of the viral life cycle (i.e., the cell exit system) represents a viable option to potentially counteract morbilliviral infections. The matrix (M) protein of morbillivirus is a major contributor to membrane budding activity and is assumed to assemble into dimers that further associate to form higher oligomers. Here, we rationally engineered M protein variants with modifications in two microdomains that potentially locate at dimer-dimer interfaces. Our results spotlight the cornerstone impact of both microdomains in membrane budding activity and further suggest a role of finely tuned high-order oligomer formation in regulating late stages of cell exit. Collectively, our findings highlight two microdomains in the morbilliviral M protein as novel attractive targets for drug design

    Measles Virus Fusion Protein: Structure, Function and Inhibition.

    Get PDF
    Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options

    Antiviral Screen against Canine Distemper Virus-Induced Membrane Fusion Activity.

    Get PDF
    Canine distemper virus (CDV), a close relative of the human pathogen measles virus (MeV), is an enveloped, negative sense RNA virus that belongs to the genus Morbillivirus and causes severe diseases in dogs and other carnivores. Although the vaccination is available as a preventive measure against the disease, the occasional vaccination failure highlights the importance of therapeutic alternatives such as antivirals against CDV. The morbilliviral cell entry system relies on two interacting envelope glycoproteins: the attachment (H) and fusion (F) proteins. Here, to potentially discover novel entry inhibitors targeting CDV H, F and/or the cognate receptor: signaling lymphocyte activation molecule (SLAM) proteins, we designed a quantitative cell-based fusion assay that matched high-throughput screening (HTS) settings. By screening two libraries of small molecule compounds, we successfully identified two membrane fusion inhibitors (F2736-3056 and F2261-0043). Although both inhibitors exhibited similarities in structure and potency with the small molecule compound 3G (an AS-48 class morbilliviral F-protein inhibitor), F2736-3056 displayed improved efficacy in blocking fusion activity when a 3G-escape variant was employed. Altogether, we present a cell-based fusion assay that can be utilized not only to discover antiviral agents against CDV but also to dissect the mechanism of morbilliviral-mediated cell-binding and cell-to-cell fusion activity

    LRP6 Is a Functional Receptor for Attenuated Canine Distemper Virus.

    Get PDF
    Wild-type canine distemper virus (CDV) is an important pathogen of dogs as well as wildlife that can infect immune and epithelial cells through two known receptors: the signaling lymphocytic activation molecule (SLAM) and nectin-4, respectively. Conversely, the ferret and egg-adapted CDV-Onderstepoort strain (CDV-OP) is employed as an effective vaccine for dogs. CDV-OP also exhibits promising oncolytic properties, such as its abilities to infect and kill multiple cancer cells in vitro. Interestingly, several cancer cells do not express SLAM or nectin-4, suggesting the presence of a yet unknown entry factor for CDV-OP. By conducting a genome-wide CRISPR/Cas9 knockout (KO) screen in CDV-OP-susceptible canine mammary carcinoma P114 cells, which neither express SLAM nor nectin-4, we identified low-density lipoprotein receptor-related protein 6 (LRP6) as a host factor that promotes CDV-OP infectivity. Whereas the genetic ablation of LRP6 rendered cells resistant to infection, ectopic expression in resistant LRP6KO cells restored susceptibility. Furthermore, multiple functional studies revealed that (i) the overexpression of LRP6 leads to increased cell-cell fusion, (ii) a soluble construct of the viral receptor-binding protein (solHOP) interacts with a soluble form of LRP6 (solLRP6), (iii) an H-OP point mutant that prevents interaction with solLRP6 abrogates cell entry in multiple cell lines once transferred into recombinant viral particles, and (iv) vesicular stomatitis virus (VSV) pseudotyped with CDV-OP envelope glycoproteins loses its infectivity in LRP6KO cells. Collectively, our study identified LRP6 as the long sought-after cell entry receptor of CDV-OP in multiple cell lines, which set the molecular bases to refine our understanding of viral-cell adaptation and to further investigate its oncolytic properties. IMPORTANCE Oncolytic viruses (OV) have gathered increasing interest in recent years as an alternative option to treat cancers. The Onderstepoort strain of canine distemper virus (CDV-OP), an enveloped RNA virus belonging to the genus Morbillivirus, is employed as a safe and efficient vaccine for dogs against distemper disease. Importantly, although CDV-OP can infect and kill multiple cancer cell lines, the basic mechanisms of entry remain to be elucidated, as most of those transformed cells do not express natural receptors (i.e., SLAM and nectin-4). In this study, using a genome-wide CRISPR/Cas9 knockout screen, we describe the discovery of LRP6 as a novel functional entry receptor for CDV-OP in various cancer cell lines and thereby uncover a basic mechanism of cell culture adaptation. Since LRP6 is upregulated in various cancer types, our data provide important insights in order to further investigate the oncolytic properties of CDV-OP

    Optimized intramuscular immunization with VSV-vectored spike protein triggers a superior immune response to SARS-CoV-2.

    Get PDF
    Immunization with vesicular stomatitis virus (VSV)-vectored COVID-19 vaccine candidates expressing the SARS-CoV-2 spike protein in place of the VSV glycoprotein relies implicitly on expression of the ACE2 receptor at the muscular injection site. Here, we report that such a viral vector vaccine did not induce protective immunity following intramuscular immunization of K18-hACE2 transgenic mice. However, when the viral vector was trans-complemented with the VSV glycoprotein, intramuscular immunization resulted in high titers of spike-specific neutralizing antibodies. The vaccinated animals were fully protected following infection with a lethal dose of SARS-CoV-2-SD614G via the nasal route, and partially protected if challenged with the SARS-CoV-2Delta variant. While dissemination of the challenge virus to the brain was completely inhibited, replication in the lung with consequent lung pathology was not entirely controlled. Thus, intramuscular immunization was clearly enhanced by trans-complementation of the VSV-vectored vaccines by the VSV glycoprotein and led to protection from COVID-19, although not achieving sterilizing immunity

    Cryo-EM structure of the prefusion state of canine distemper virus fusion protein ectodomain

    Get PDF
    Measles virus (MeV) and canine distemper virus (CDV), two members of the Morbillivirus genus, are still causing important global diseases of humans and animals, respectively. To enter target cells, morbilliviruses rely on an envelope-anchored machinery, which is composed of two interacting glycoproteins: a tetrameric receptor binding (H) protein and a trimeric fusion (F) protein. To execute membrane fusion, the F protein initially adopts a metastable, prefusion state that refolds into a highly stable postfusion conformation as the result of a finely coordinated activation process mediated by the H protein. Here, we employed cryo-electron microscopy (cryo-EM) and single particle reconstruction to elucidate the structure of the prefusion state of the CDV F protein ectodomain (solF) at 4.3 Å resolution. Stabilization of the prefusion solF trimer was achieved by fusing the GCNt trimerization sequence at the C-terminal protein region, and expressing and purifying the recombinant protein in the presence of a morbilliviral fusion inhibitor class compound. The three-dimensional cryo-EM map of prefusion CDV solF in complex with the inhibitor clearly shows density for the ligand at the protein binding site suggesting common mechanisms of membrane fusion activation and inhibition employed by different morbillivirus members

    Canine distemper virus persistence in demyelinating encephalitis by swift intracellular cell-to-cell spread in astrocytes is controlled by the viral attachment protein

    Get PDF
    The mechanism of viral persistence, the driving force behind the chronic progression of inflammatory demyelination in canine distemper virus (CDV) infection, is associated with non-cytolytic viral cell-to-cell spread. Here, we studied the molecular mechanisms of viral spread of a recombinant fluorescent protein-expressing virulent CDV in primary canine astrocyte cultures. Time-lapse video microscopy documented that CDV spread was very efficient using cell processes contacting remote target cells. Strikingly, CDV transmission to remote cells could occur in less than 6 h, suggesting that a complete viral cycle with production of extracellular free particles was not essential in enabling CDV to spread in glial cells. Titration experiments and electron microscopy confirmed a very low CDV particle production despite higher titers of membrane-associated viruses. Interestingly, confocal laser microscopy and lentivirus transduction indicated expression and functionality of the viral fusion machinery, consisting of the viral fusion (F) and attachment (H) glycoproteins, at the cell surface. Importantly, using a single-cycle infectious recombinant H-knockout, H-complemented virus, we demonstrated that H, and thus potentially the viral fusion complex, was necessary to enable CDV spread. Furthermore, since we could not detect CD150/SLAM expression in brain cells, the presence of a yet non-identified glial receptor for CDV was suggested. Altogether, our findings indicate that persistence in CDV infection results from intracellular cell-to-cell transmission requiring the CDV-H protein. Viral transfer, happening selectively at the tip of astrocytic processes, may help the virus to cover long distances in the astroglial network, “outrunning” the host’s immune response in demyelinating plaques, thus continuously eliciting new lesions
    corecore