1,413 research outputs found

    Strain localization driven by thermal decomposition during seismic shear

    Get PDF
    Field and laboratory observations show that shear deformation is often extremely localized at seismic slip rates, with a typical deforming zone width on the order of a few tens of microns. This extreme localization can be understood in terms of thermally driven weakening mechanisms. A zone of initially high strain rate will experience more shear heating and thus weaken faster, making it more likely to accommodate subsequent deformation. Fault zones often contain thermally unstable minerals such as clays or carbonates, which devolatilize at the high temperatures attained during seismic slip. In this paper, we investigate how these thermal decomposition reactions drive strain localization when coupled to a model for thermal pressurization of in situ groundwater. Building on Rice et al. (2014), we use a linear stability analysis to predict a localized zone thickness that depends on a combination of hydraulic, frictional, and thermochemical properties of the deforming fault rock. Numerical simulations show that the onset of thermal decomposition drives additional strain localization when compared with thermal pressurization alone and predict localized zone thicknesses of ∼7 and ∼13 μm for lizardite and calcite, respectively. Finally we show how thermal diffusion and the endothermic reaction combine to limit the peak temperature of the fault and that the pore fluid released by the reaction provides additional weakening of ∼20–40% of the initial strength

    Holographic and ultrasonic detection of bond flaws in aluminum panels reinforced with boron-epoxy

    Get PDF
    An experimental investigation was made of the application of holographic interferometry to the nondestructive detection of unbonded areas (flaws) in bonded panels. Flaw detection results were compared with results obtained with an ultrasonic flaw detector. Holography, with panel deformation accomplished by a reduction in ambient pressure, is less sensitive for flaws beneath 5 and 10 plies of boron-epoxy than the ultrasonic method, though it does have its operational advantages. A process for the manufacture of bonded panels which incorporate known unbonded areas was also developed. The unbonded areas were formed without the use of foreign materials, which makes the method suitable for the construction of reference standards for bonded panels whenever needed for the proper setup of ultrasonic flaw-detection instruments

    Sub-Grants (1989-1990): Correspondence 06

    Get PDF

    Learning Grasp Strategies Composed of Contact Relative Motions

    Get PDF
    Of central importance to grasp synthesis algorithms are the assumptions made about the object to be grasped and the sensory information that is available. Many approaches avoid the issue of sensing entirely by assuming that complete information is available. In contrast, this paper proposes an approach to grasp synthesis expressed in terms of units of control that simultaneously change the contact configuration and sense information about the object and the relative manipulator-object pose. These units of control, known as contact relative motions (CRMs), allow the grasp synthesis problem to be recast as an optimal control problem where the goal is to find a strategy for executing CRMs that leads to a grasp in the shortest number of steps. An experiment is described that uses Robonaut, the NASA-JSC space humanoid, to show that CRMs are a viable means of synthesizing grasps. However, because of the limited amount of information that a single CRM can sense, the optimal control problem may be partially observable. This paper proposes expressing the problem as a k-order Markov Decision Process (MDP) and solving it using Reinforcement Learning. This approach is tested in a simulation of a two-contact manipulator that learns to grasp an object. Grasp strategies learned in simulation are tested on the physical Robonaut platform and found to lead to grasp configurations consistently

    Method and apparatus for calibrating multi-axis load cells in a dexterous robot

    Get PDF
    A robotic system includes a dexterous robot having robotic joints, angle sensors adapted for measuring joint angles at a corresponding one of the joints, load cells for measuring a set of strain values imparted to a corresponding one of the load cells during a predetermined pose of the robot, and a host machine. The host machine is electrically connected to the load cells and angle sensors, and receives the joint angle values and strain values during the predetermined pose. The robot presses together mating pairs of load cells to form the poses. The host machine executes an algorithm to process the joint angles and strain values, and from the set of all calibration matrices that minimize error in force balance equations, selects the set of calibration matrices that is closest in a value to a pre-specified value. A method for calibrating the load cells via the algorithm is also provided
    • …
    corecore