18 research outputs found

    The Electronic Structures and Energies of the Lowest Excited States of the Ns0, Ns+, Nsāˆ’ and Ns-H Defects in Diamond

    Get PDF
    This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (grant agreement No. 101052200ā€”EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them. AP also acknowledges, with thanks, the financial support provided by ā€œStrengthening of the capacity of doctoral studies at the University of Latvia within the framework of the new doctoral modelā€, No. 8.2.2.0/20/I/006, and Scientific Research Project for Students and Young Researchers, Nr. SJZ/2021/5 implemented at the Institute of Solid State Physics, University of Latvia.This paper reports the energies and charge and spin distributions of the mono-substituted N defects, N0s, N+s, Nāˆ’s and Ns-H in diamonds from direct Ī”-SCF calculations based on Gaussian orbitals within the B3LYP function. These predict that (i) Ns0, Ns+ and Nsāˆ’ all absorb in the region of the strong optical absorption at 270 nm (4.59 eV) reported by Khan et al., with the individual contributions dependent on the experimental conditions; (ii) Ns-H, or some other impurity, is responsible for the weak optical peak at 360 nm (3.44 eV); and that Ns+ is the source of the 520 nm (2.38 eV) absorption. All excitations below the absorption edge of the diamond host are predicted to be excitonic, with substantial re-distributions of charge and spin. The present calculations support the suggestion by Jones et al. that Ns+ contributes to, and in the absence of Ns0 is responsible for, the 4.59 eV optical absorption in N-doped diamonds. The semi-conductivity of the N-doped diamond is predicted to rise from a spin-flip thermal excitation of a CN hybrid orbital of the donor band resulting from multiple in-elastic phonon scattering. Calculations of the self-trapped exciton in the vicinity of Ns0 indicate that it is essentially a local defect consisting of an N and four nn C atoms, and that beyond these the host lattice is essential a pristine diamond as predicted by Ferrari et al. from the calculated EPR hyperfine constants. Ā© 2023 by the authors.--//-- This is an open access article Platonenko A., Mackrodt W.C., Dovesi R.; The Electronic Structures and Energies of the Lowest Excited States of the Ns0, Ns+, Nsāˆ’ and Ns-H Defects in Diamond; (2023) Materials, 16 (5), art. no. 1979; DOI: 10.3390/ma16051979; https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149871852&doi=10.3390%2fma16051979&partnerID=40&md5=b11fbcbf91ce1013d1a0e817573fd2fe published under the CC BY 4.0 licence.EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (grant agreement No. 101052200ā€”EUROfusion); Latvijas Universitate 8.2.2.0/20/I/006, SJZ/2021/5; Scientific Research Project for Students and Young Researchers, Nr. SJZ/2021/5 implemented at the Institute of Solid State Physics, University of Latvia; the Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01ā€“2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2

    Ab initio simulations on charged interstitial oxygen migration in corundum

    Get PDF
    We have performed this work within the framework of the EUROfusion Consortium receiving funding from the European grant agreement 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Authors thank R. Vila, A.I. Popov, A. Luchshik and R.A. Evarestov for fruitful discussions. To carry out large-scale calculations, we have used the HPC supercomputer at Stuttgart University (Germany)We have calculated possible migration trajectories for single-charged interstitial Oiāˆ’ anion using large-scale hybrid density functional theory within linear combination of atomic orbitals approach to defective Ī±-Al2O3 crystals. The most energetically favorable configuration for charged Oiāˆ’ anion is formation of pseudo-dumbbell (split interstitial) with a regular Oreg ion. For charged interstitial oxygen migration, the energy barrier turns out to be āˆ¼0.8ā€“1.0ā€ÆeV. This is considerably smaller than that for a neutral interstitial atoms (1.3ā€ÆeV), in agreement with experimental data.EUROfusion Consortium receiving funding from the European grant agreement 633053; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Unionā€™s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Nitrogen substitutional defects in silicon. A quantum mechanical investigation of the structural, electronic and vibrational properties

    Get PDF
    RD and FSG acknowledges the CINECA award (HP10CTG8YY) under the ISCRA initiative, for the availability of high performance computing resources and support.The vibrational infrared (IR) and Raman spectra of seven substitutional defects in bulk silicon are computed, by using the quantum mechanical CRYSTAL code, the supercell scheme, an all electron Gaussian type basis set and the B3LYP functional. The relative stability of various spin states has been evaluated, the geometry optimized, the electronic structure analyzed. The IR and Raman intensities have been evaluated analitically. In all cases the IR spectrum is dominated by a single N peak (or by two or three peaks with very close wavenumbers), whose intensity is at least 20 times larger than the one of any other peak. These peaks fall in the 645ā€“712 cmāˆ’1 interval, and a shift of few cmāˆ’1 is observed from case to case. The Raman spectrum of all defects is dominated by an extremely intense peak at about 530 cmāˆ’1, resulting from the (weak) perturbation of the peak of pristine silicon.ISCRA initiative CINECA award (HP10CTG8YY); Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Unionā€™s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Vacancy defects in Ga2O3: First-principles calculations of electronic structure

    Get PDF
    This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08856540) as well as by the Latvian research council via the Latvian National Research Program under the topic ?High-Energy Physics and Accelerator Technologies?, Agreement No: VPP-IZM-CERN-2020/1-0002 for A.I. Popov. In addition, J. Purans is grateful to the ERAF project 1.1.1.1/20/A/057 while A. Platonenko was supported by Latvian Research Council No. LZP-2018/1-0214. The authors thank A. Lushchik and M. Lushchik for many useful discussions. The research was (partly) performed in the Institute of Solid State Physics, University of Latvia ISSP UL. ISSP UL as the Center of Excellence is supported through the Framework Program for European universities Union Horizon 2020, H2020-WIDESPREAD-01?2016?2017-TeamingPhase2 under Grant Agreement No. 739508, CAMART2 project.First-principles density functional theory (DFT) is employed to study the electronic structure of oxygen and gallium vacancies in monoclinic bulk Ī²-Ga2 O3 crystals. Hybrid exchangeā€“ correlation functional B3LYP within the density functional theory and supercell approach were successfully used to simulate isolated point defects in Ī²-Ga2 O3. Based on the results of our calcu-lations, we predict that an oxygen vacancy in Ī²-Ga2 O3 is a deep donor defect which cannot be an effective source of electrons and, thus, is not responsible for n-type conductivity in Ī²-Ga2 O3. On the other hand, all types of charge states of gallium vacancies are sufficiently deep acceptors with transition levels more than 1.5 eV above the valence band of the crystal. Due to high formation energy of above 10 eV, they cannot be considered as a source of p-type conductivity in Ī²-Ga2 O3. Ā© 2021 by the authors. Licensee MDPI, Basel, Switzerland. Published under the CC BY 4.0 license.Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08856540); Latvian Council of Science via the Latvian National Research Program VPP-IZM-CERN-2020/1-0002 ; ERAF project 1.1.1.1/20/A/057; Latvian Council of Science No. LZP-2018/1-0214; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Unionā€™s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2

    Modeling of the Lattice Dynamics in Strontium Titanate Films of Various Thicknesses: Raman Scattering Studies

    Get PDF
    This paper is partly based upon COST (European Cooperation in Science and Technology) Action 18234 (E.A.K., M.S., and V.K.) and financially supported by FLAG-ERA JTC project To2Dox (Y.A.M). The Institute of Solid State Physics, University of Latvia (Latvia), as the Centre of Excellence has received funding from the European Unionā€™s Horizon 2020 Frame-work Programme H2020-WIDESPREAD-01-2016-2017-Teaming Phase2 under grant agreement No. 739508, project CAMART2. The computer resources were provided by the High-Performance Computing Centre Stuttgart (HLRS project DEFTD 12939). In addition, the research of V.K. and A.P. was partly supported by the RADON project (GA 872494) within the H2020-MSCA-RISE-2019 call.While the bulk strontium titanate (STO) crystal characteristics are relatively well known, ultrathin perovskitesā€™ nanostructure, chemical composition, and crystallinity are quite complex and challenging to understand in detail. In our study, the DFT methods were used for modelling the Raman spectra of the STO bulk (space group I4/mcm) and 5ā€“21-layer thin films (layer group p4/mbm) in tetragonal phase with different thicknesses ranging from ~0.8 to 3.9 nm. Our calculations revealed features in the Raman spectra of the films that were absent in the bulk spectra. Out of the seven Raman-active modes associated with bulk STO, the frequencies of five modes (2Eg, A1g, B2g, and B1g) decreased as the film thickness increased, while the low-frequency B2g and higher-frequency Eg modes frequencies increased. The modes in the films exhibited vibrations with different amplitudes in the central or surface parts of the films compared to the bulk, resulting in frequency shifts. Some peaks related to bulk vibrations were too weak (compared to the new modes related to films) to distinguish in the Raman spectra. However, as the film thickness increased, the Raman modes approached the frequencies of the bulk, and their intensities became higher, making them more noticeable in the Raman spectrum. Our results could help to explain inconsistencies in the experimental data for thin STO films, providing insights into the behavior of Raman modes and their relationship with film thickness. Ā© 2023 by the authors. --//-- Krasnenko V., Platonenko A., Liivand A., Rusevich L.L., Mastrikov Y.A., Zvejnieks G., Sokolov M., Kotomin E.A.; Modeling of the Lattice Dynamics in Strontium Titanate Films of Various Thicknesses: Raman Scattering Studies; (2023) Materials, 16 (18), art. no. 6207; DOI: 10.3390/ma16186207; https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172725318&doi=10.3390%2fma16186207&partnerID=40&md5=32f343f9cb8da145c6647566cb534c32. Published under the CC BY 4.0 license.COST Action 18234 and FLAG-ERA JTC project To2Dox. The Institute of Solid State Physics, University of Latvia (Latvia), as the Centre of Excellence has received funding from the European Unionā€™s Horizon 2020 Frame-work Programme H2020-WIDESPREAD-01-2016-2017-Teaming Phase2 under grant agreement No. 739508, project CAMART2. HLRS project DEFTD 12939. RADON project (GA 872494) within the H2020-MSCA-RISE-2019 call

    Atomic, electronic and magnetic structure of an oxygen interstitial in neutron-irradiated Al2O3 single crystals

    Get PDF
    This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under Grant Agreement No. 633053 and Enabling Research project: ENR-MFE19.ISSP-UL-02 ā€œAdvanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion applicationā€. The views and opinions expressed herein do not necessarily reflect those of the European Commission. In addition, the research leading to these results has received funding from the Estonian Research Council grant (PUT PRG619).A single radiation-induced superoxide ion O2- has been observed for the first time in metal oxides. This structural defect has been revealed in fast-neutron-irradiated (6.9Ɨ1018n/cm2) corundum (Ī±-Al2O3) single crystals using the EPR method. Based on the angular dependence of the EPR lines at the magnetic field rotation in different planes and the determined g tensor components, it is shown that this hole-type O2- center (i) incorporates one regular and one interstitial oxygen atoms being stabilized by a trapped hole (S = 1/2), (ii) occupies one oxygen site in the (0001) plane being oriented along the a axis, and (iii) does not contain any other imperfection/defect in its immediate vicinity. The thermal stepwise annealing (observed via the EPR signal and corresponding optical absorption bands) of the O2- centers, caused by their destruction with release of a mobile ion (tentatively the oxygen ion with the formal charge āˆ’1), occurs at 500ā€“750 K, simultaneously with the partial decay of single F-type centers (mostly with the EPR-active F+ centers). The obtained experimental results are in line with the superoxide defect configurations obtained via density functional theory (DFT) calculations employing the hybrid B3PW exchange-correlation functional. In particular, the DFT calculations confirm the O2- center spin S = 1/2, its orientation along the a axis. The O2- center is characterized by a short Oā€“O bond length of 1.34 ƅ and different atomic charges and magnetic moments of the two oxygens. We emphasize the important role of atomic charges and magnetic moments analysis in order to identify the ground state configuration.Eesti Teadusagentuur PUT PRG619; H2020 Euratom ENR-MFE19,633053; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Unionā€™s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Site symmetry approach applied to the supercell model of MgAl2O4 spinel with oxygen interstitials: Ab initio calculations

    Get PDF
    This study has been carried out within the framework of the EUROfusion Consortium and has been provided funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The authors are indebted to E.A. Kotomin, A.I. Popov and R. Vila for stimulating discussions. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Calculations have been performed using both the Marconi supercomputer system at the Computational Simulation Centre (Italy) and the Computer Center of St. Petersburg State University.In this study we simulate structural, electronic and phonon properties of MgAl2O4 spinel containing a single neutral oxygen interstitial (Oi) per crystalline L4 and L8 supercells, e.g., its dumbbell formed with one of the nearest regular oxygen atoms of the lattice (Oi-Oreg). Due to the splitting of the Wyckoff positions in supercell models of a perfect crystal, five possible Oi positions with different site symmetry have been identified and studied (C1, Cs, C3v D2d and Td). First principles hybrid HSE06 DFT functional calculations on perfect and defective spinel structures have been accompanied by geometry optimization. The calculated properties of spinel crystal (lattice constants, bulk modulus, band gap as well as frequencies of infrared- and Raman-active vibrational modes) are in a good qualitative agreement with the corresponding experimental data. The formation energy of Oi is found to be minimal for the interstitial site of the lowest symmetry (C1). The results obtained are important, in particular, for understanding the radiation and chemical stability as well as other key properties of MgAl2O4 spinel-type oxide crystals.EUROfusion Consortium Euratom research and training programme 2014-2018 under grant agreement No 633053; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Unionā€™s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Hybrid density functional calculations of hyperfine coupling tensor for hole-type defects in MgAl2O4

    Get PDF
    This work has been performed within the framework of the EUROfusion Enabling Research project: ENR-MFE19.ISSP-UL-02 ā€œAdvanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion applicationā€. The views and opinions expressed herein do not necessarily reflect those of the European Commission.We have performed the density functional calculations (DFT) on the hole-type defects (V-centres) in magnesium aluminate spinel (MgAl2O4) following the results of recent paramagnetic resonance measurements (EPR) in Nucl. Inst. Methods Phys. Res. B 435 (2018) 31ā€“37. The hybrid B3LYP functional calculations using large supercells of 448 atoms have demonstrated excellent results not only for bulk properties but also properties of the V-centres in MgAl2O4. Three types of V-centres have been considered and confirmed, namely V1, V2 and V22. The DFT calculations have revealed the atomic relaxation pattern and spin density distribution around the hole-type defects that is suggested as an important complement to the experiments. Moreover, the calculated hyperfine coupling constants (HCCs) have been analyzed and compared with those from the measured EPR spectra. A good agreement between the calculated and measured HCC values is observed and discussed.EUROfusion Enabling Research project: ENR-MFE19.ISSP-UL-02; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Unionā€™s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    First-principles calculations of oxygen interstitials in corundum: A site symmetry approach

    Get PDF
    The authors are indebted to R. Vila, A. Popov and A. Lushchik for stimulating discussions. This work was carried out within the framework of the EUROfusion Consortium and received funding from the European Unionā€™s Horizon 2020 Research and Innovation Programme under grant agreement 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Support from Latvian National Research Program IMIS2 (2014ā€“2017) is also appreciated. Calculations were carried out using both the Marconi supercomputer system at the Computational Simulation Centre and the Computer Center of St. Petersburg State University.Using site symmetry analysis, four possible positions of interstitial oxygen atoms in the Ī±-Al2O3 hexagonal structure have been identified and studied. First principles hybrid functional calculations of the relevant atomic and electronic structures for interstitial Oi atom insertion in these positions reveal differences in energies of āˆ¼1.5 eV. This approach allows us to get the lowest energy configuration, avoiding time-consuming calculations. It is shown that the triplet oxygen atom is barrierless displaced towards the nearest regular oxygen ion, forming a singlet dumbbell (split interstitial) configuration with an energy gain of āˆ¼2.5 eV. The charge and spatial structure of the dumbbell is discussed. Our results are important, in particular, for understanding the radiation properties and stability of Ī±-Al2O3 and other oxide crystals.EUROfusion Consortium European Unionā€™s Horizon 2020 Research and Innovation Programme under grant agreement 633053; Latvian National Research Program IMIS2; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Unionā€™s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Nitrogen interstitial defects in silicon. A quantum mechanical investigation of the structural, electronic and vibrational properties

    Get PDF
    The vibrational features of eight interstitial nitrogen related defects in silicon have been investigated at the first principles quantum mechanical level by using a periodic supercell approach, a hybrid functionals, an all electron Gaussian type basis set and the Crystal code. The list includes defects that will be indicated as Ni (one N atom forming a bridge between two Si atoms), Ni-Ns (one interstitial and one substitutional N atom linked to the same Si atom), Ni-Ni (two Ni defects linked to the same couple of silicon atoms) and Ni-Sii-Ni (two Ni defects linked to the same interstitial silicon atom). Four 怈0ā€Æ0ā€Æ1怉 split interstitial (dumbbell) defects have also been considered, in which one lattice atom splits in two, and as a result the two interstitial atoms are three fold coordinated: they are two N (indicated as IN-N), one N and one Si (IN-Si), one N and one C (IC-N). For comparison, also the case with two Si atoms (ISi-Si) has been included. Four of these eight defects have unpaired electrons, and have been described through the UHF (Unrestricted Hartree-Fock like) computational scheme. The local defect geometry and the charge and spin density distributions have been analyzed. For the first time, intensities of IR and Raman spectra were calculated along with the frequencies, and this is crucial for the comparison of theoretical simulations with experiments. All these defects present very characteristic features in their IR spectrum, dominated by one or two very intense peaks. It has been possible to find a simulated counterpart to each one of the five peaks reported by Stein in 1985 (Applied Physics Letters, 47, 1339), and then to establish a correspondence between the microscopic structure of the defects and the IR intense peaks. The Raman spectra are in all cases dominated by the perfect silicon peak at about 530ā€Æcmāˆ’1, and are then not very useful for the characterization of the defects.Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Unionā€™s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART
    corecore