879 research outputs found

    Communication: Improving the density functional theoryU description of CeO 2 by including the contribution of the O 2p electrons

    Get PDF
    Density functional theory (DFT) based approaches within the local-density approximation or generalized gradient approximation frameworks fail to predict the correct electron localization in strongly correlated systems due to the lack of cancellation of the Coulomb self-interaction. This problem might be circumvented either by using hybrid functionals or by introducing a Hubbard-like term to account for the on site interactions. This latter DFTU approach is less expensive and therefore more practical for extensive calculations in solid-state computational simulations. By and large, the U term only affects the metal electrons, in our case the Ce 4f ones. In the present work, we report a systematic analysis of the effect of adding such a U term also to the oxygen 2p electrons. We find that using a set of U f 5 eV and U p 5eV effective terms leads to improved description of the lattice parameters, band gaps, and formation and reduction energies of CeO

    Kicked Bose-Hubbard systems and kicked tops -- destruction and stimulation of tunneling

    Get PDF
    In a two-mode approximation, Bose-Einstein condensates (BEC) in a double-well potential can be described by a many particle Hamiltonian of Bose-Hubbard type. We focus on such a BEC whose interatomic interaction strength is modulated periodically by δ\delta-kicks which represents a realization of a kicked top. In the (classical) mean-field approximation it provides a rich mixed phase space dynamics with regular and chaotic regions. By increasing the kick-strength a bifurcation leads to the appearance of self-trapping states localized on regular islands. This self-trapping is also found for the many particle system, however in general suppressed by coherent many particle tunneling oscillations. The tunneling time can be calculated from the quasi-energy splitting of the corresponding Floquet states. By varying the kick-strength these quasi-energy levels undergo both avoided and even actual crossings. Therefore stimulation or complete destruction of tunneling can be observed for this many particle system

    A microjet based recuperator for application in domestic micro chp

    Get PDF
    Paper presented at the 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Mauritius, 11-13 July, 2011.In the paper the original design of a compact heat exchanger with microjets producing intensification effect is presented. Its primary application is for the domestic Organic Rankine Cycle (ORC), however, the design is universal and may have numerous other applications. The technology of microjets manufacturing is an “in-house” patented design. In the present paper the idea of such a heat exchanger is shown together with the flow and thermal characteristics of the prototype. The developed prototype of heat exchanger is capable of exchanging 5 kW of thermal energy at a logarithmic mean temperature difference (LMTD) of 60 K. The total heat transfer surface equal to 0.0072 m2 leads to very significant heat fluxes. Measured overall heat transfer coefficient reaches 12000 W/m2K, which was calculated using the Wilson method. The description of the Wilson technique used for the determination of the heat transfer coefficient is also presented in the body of the text. That method seems to be, in the authors’ opinion, the only one for finding the heat transfer coefficient for such a complex heat exchanger structure. In this case measurements of wall temperatures are not possible and hence the determination of heat transfer coefficient is difficult. The results of performed measurements are satisfactory and encourage for further research of the original design.pm201

    Tunneling in a cavity

    Full text link
    The mechanism of coherent destruction of tunneling found by Grossmann et al. [Phys. Rev. Lett. 67, 516 (1991)] is studied from the viewpoint of quantum optics by considering the photon statistics of a single mode cavity field which is strongly coupled to a two-level tunneling system (TS). As a function of the interaction time between TS and cavity the photon statistics displays the tunneling dynamics. In the semi-classical limit of high photon occupation number nn, coherent destruction of tunneling is exhibited in a slowing down of an amplitude modulation for certain parameter ratios of the field. The phenomenon is explained as arising from interference between displaced number states in phase space which survives the large nn limit due to identical n1/2n^{-1/2} scaling between orbit width and displacement.Comment: 4 pages Revtex, 2 PS-figures, appears in The Physical Review

    Building Bridges to Overcome Widening Gaps: Challenges in Addressing the Need for Professional Preparation of Infant-Toddler Practitioners in Higher Education

    Get PDF
    As the professional qualifications for those working with infants, toddlers, and their families continue to expand, institutes of higher education (IHEs) play an increasingly vital role in training the infant/toddler workforce. However, IHEs face numerous programming and pedagogical issues that make meeting the needs of these professionals difficult. These issues are further complicated by persistent challenges within early care and education. In this paper, we examine these issues in detail and discuss the Collaborative for Understanding the Pedagogy of Infant/toddler Development (CUPID), a cross-institution partnership working to enhance the quality of infant/toddler professional preparation in higher education

    Ionization via Chaos Assisted Tunneling

    Full text link
    A simple example of quantum transport in a classically chaotic system is studied. It consists in a single state lying on a regular island (a stable primary resonance island) which may tunnel into a chaotic sea and further escape to infinity via chaotic diffusion. The specific system is realistic : it is the hydrogen atom exposed to either linearly or circularly polarized microwaves. We show that the combination of tunneling followed by chaotic diffusion leads to peculiar statistical fluctuation properties of the energy and the ionization rate, especially to enhanced fluctuations compared to the purely chaotic case. An appropriate random matrix model, whose predictions are analytically derived, describes accurately these statistical properties.Comment: 30 pages, 11 figures, RevTeX and postscript, Physical Review E in pres

    Effect of dissipation and measurement on a tunneling system

    Get PDF
    We consider a parametrically driven Kerr medium in which the pumping may be sinusoidally varied. It has been previously found that this system exhibits coherent tunneling between two fixed points which can be either enhanced or suppressed by altering the driving frequency and strength. We numerically investigate the dynamics when damping is included. This is done both by solving a master equation and using the quantum-trajectory method. In the latter case it is also possible to model the result of a continuous heterodyne measurement of the cavity output. The dissipation destroys the coherences which give rise to the tunneling, causing the sinusoidal oscillation of the mean to give way to a stochastic jumping between the fixed points, manifested as a random telegraph signal. In the quantum-trajectory picture we show that the coherences responsible for tunneling are an exponentially decreasing function of the signal-to-noise ratio for heterodyne measurements. However, evidence of both the bare tunneling rate and the driving modified tunneling rate are still apparent in the random telegraph signal
    corecore