33 research outputs found

    Homochirality and the need of energy

    Full text link
    The mechanisms for explaining how a stable asymmetric chemical system can be formed from a symmetric chemical system, in the absence of any asymmetric influence other than statistical fluctuations, have been developed during the last decades, focusing on the non-linear kinetic aspects. Besides the absolute necessity of self-amplification processes, the importance of energetic aspects is often underestimated. Going down to the most fundamental aspects, the distinction between a single object -- that can be intrinsically asymmetric -- and a collection of objects -- whose racemic state is the more stable one -- must be emphasized. A system of strongly interacting objects can be described as one single object retaining its individuality and a single asymmetry; weakly or non-interacting objects keep their own individuality, and are prone to racemize towards the equilibrium state. In the presence of energy fluxes, systems can be maintained in an asymmetric non-equilibrium steady-state. Such dynamical systems can retain their asymmetry for times longer than their racemization time.Comment: 8 pages, 7 figures, submitted to Origins of Life and Evolution of Biosphere

    Toward homochiral protocells in noncatalytic peptide systems

    Full text link
    The activation-polymerization-epimerization-depolymerization (APED) model of Plasson et al. has recently been proposed as a mechanism for the evolution of homochirality on prebiotic Earth. The dynamics of the APED model in two-dimensional spatially-extended systems is investigated for various realistic reaction parameters. It is found that the APED system allows for the formation of isolated homochiral proto-domains surrounded by a racemate. A diffusive slowdown of the APED network such as induced through tidal motion or evaporating pools and lagoons leads to the stabilization of homochiral bounded structures as expected in the first self-assembled protocells.Comment: 10 pages, 5 figure

    Transiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first Super-Earth with measured radius

    Get PDF
    We report the discovery of very shallow (DF/F = 3.4 10-4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as due to the presence of a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We use CoRoT color information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy and preliminary results from Radial Velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star are derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. We examine carefully all conceivable cases of false positives, and all tests performed support the planetary hypothesis. Blends with separation larger than 0.40 arcsec or triple systems are almost excluded with a 8 10-4 risk left. We conclude that, as far as we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 +/- 3 10-5 day and a radius of Rp = 1.68 +/- 0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding. CoRoT-7b is very likely the first Super-Earth with a measured radius.Comment: Accepted in Astronomy and Astrophysics; typos and language corrections; version sent to the printer w few upgrade

    The instrument control unit of the ESA-PLATO 2.0 mission

    Get PDF
    PLATO 2.0 has been selected by ESA as the third medium-class Mission (M3) of the Cosmic Vision Program. Its Payload is conceived for the discovery of new transiting exoplanets on the disk of their parent stars and for the study of planetary system formation and evolution as well as to answer fundamental questions concerning the existence of other planetary systems like our own, including the presence of potentially habitable new worlds. The PLATO Payload design is based on the adoption of four sets of short focal length telescopes having a large field of view in order to exploit a large sky coverage and to reach, at the same time, the needed photometry accuracy and signalto- noise ratio (S/N) within a few tens of seconds of exposure time. The large amount of data produced by the telescope is collected and processed by means of the Payload's Data Processing System (DPS) composed by many processing electronics units. This paper gives an overview of the PLATO 2.0 DPS, mainly focusing on the architecture and processing capabilities of its Instrument Control Unit (ICU), the electronic subsystem acting as the main interface between the Payload (P/L) and the Spacecraft (S/C)

    Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: the first super-Earth with measured radius

    Get PDF
    Copyright © The European Southern Observatory (ESO)Aims. We report the discovery of very shallow (ΔF/F ≈ 3.4×10−4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as caused by a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We used CoRoT colours information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy, and preliminary results from radial velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star were derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. Results. We examined all conceivable cases of false positives carefully, and all the tests support the planetary hypothesis. Blends with separation >0.40'' or triple systems are almost excluded with a 8 × 10−4 risk left. We conclude that, inasmuch we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 ± 3 × 10−5 day and a radius of Rp = 1.68 ± 0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding. Conclusions. CoRoT-7b is very likely the first Super-Earth with a measured radius. This object illustrates what will probably become a common situation with missions such as Kepler, namely the need to establish the planetary origin of transits in the absence of a firm radial velocity detection and mass measurement. The composition of CoRoT-7b remains loosely constrained without a precise mass. A very high surface temperature on its irradiated face, ≈1800–2600 K at the substellar point, and a very low one, ≈50 K, on its dark face assuming no atmosphere, have been derived

    Erratum: The solar orbiter radio and plasma waves (RPW) instrument (Astronomy and Astrophysics (2020) 642 (A12) DOI: 10.1051/0004-6361/201936214)

    Get PDF
    The erratum concerns Fig. 9 entitled "Antenna radio-electrical properties" for which some of the parameters are not correct. The new figure with new parameters is provided in Fig. 1 of this corrigendum. Fig. 1. Corrected Antenna radio-electrical properties. (Figure Presented)

    The design of the instrument control unit and its role within the data processing system of the ESA PLATO Mission

    Get PDF
    PLATO1 is an M-class mission of the European Space Agency's Cosmic Vision program, whose launch is foreseen by 2026. PLAnetary Transits and Oscillations of stars aims to characterize exoplanets and exoplanetary systems by detecting planetary transits and conducting asteroseismology of their parent stars. PLATO is the next generation planetary transit space experiment, as it will fly after CoRoT, Kepler, TESS and CHEOPS; its objective is to characterize exoplanets and their host stars in the solar neighbors. While it is built on the heritage from previous missions, the major breakthrough to be achieved by PLATO will come from its strong focus on bright targets, typically with mvv<=8. The prime science goals characterizing and distinguishing PLATO from the previous missions are: the detection and characterization of exoplanetary systems of all kinds, including both the planets and their host stars, reaching down to small, terrestrial planets in the habitable zone; the identification of suitable targets for future, more detailed characterization, including a spectroscopic search for biomarkers in nearby habitable exoplanets (e.g. ARIEL Mission scientific case, E-ELT observations from Ground); a full characterization of the planet host stars, via asteroseismic analysis: this will provide the Community with the masses, radii and ages of the host stars, from which masses, radii and ages of the detected planets will be determined

    Coordination of the in situ payload of Solar Orbiter

    Get PDF
    Solar Orbiter’s in situ coordination working group met frequently during the development of the mission with the goal of ensuring that its in situ payload has the necessary level of coordination to maximise science return. Here we present the results of that work, namely how the design of each of the in situ instruments (EPD, MAG, RPW, SWA) was guided by the need for coordination, the importance of time synchronisation, and how science operations will be conducted in a coordinated way. We discuss the mechanisms by which instrument sampling schemes are aligned such that complementary measurements will be made simultaneously by different instruments, and how burst modes are scheduled to allow a maximum overlap of burst intervals between the four instruments (telemetry constraints mean different instruments can spend different amounts of time in burst mode). We also explain how onboard autonomy, inter-instrument communication, and selective data downlink will be used to maximise the number of transient events that will be studied using high-resolution modes of all the instruments. Finally, we briefly address coordination between Solar Orbiter’s in situ payload and other missions
    corecore