42 research outputs found

    Y-chromosome haplogroup architecture confers susceptibility to azoospermia factor c microrearrangements: a retrospective study

    Get PDF
    Aim To assess the association between azoospermia factor c microrearrangements and semen quality, and between Y-chromosome background with distinct azoospermia factor c microrearrangements and semen quality impairment. Methods This retrospective study, carried out in the Research Center for Genetic Engineering and Biotechnology “Georgi D. Efremov,” involved 486 men from different ethnic backgrounds referred for couple infertility from 2002- 2017: 338 were azoospermic/oligozoospermic and 148 were normozoospermic. The azoospermia factor c microrearrangements were analyzed with sequence tagged site and sequence family variant markers, quantitative fluorescent polymerase chain reaction, and multiplex ligation probe amplification analysis. The Y-haplogroups of all participants were determined with direct single nucleotide polymorphism typing and indirect prediction with short tandem repeat markers.Results Our participants had two types of microdeletions: gr/gr and b2/b3; three microduplications: b2/b4, gr/gr, and b2/b3; and one complex rearrangement gr/gr deletion + b2/b4 duplication. Impaired semen quality was not associated with microrearrangements, but b2/b4 and gr/ gr duplications were significantly associated with haplogroup R1a (P < 0.001 and P = 0.003, respectively) and b2/b3 deletions with haplogroup E (P = 0.005). There were significantly more b2/b4 duplication carriers in Albanians than in Macedonians with haplogroup R1a (P = 0.031). Conclusion Even though azoospermia factor c partial deletions/duplications and Y-haplogroups were not associated with impaired semen quality, specific deletions/ duplications were significantly associated with distinct haplogroups, implying that the Y chromosome background may confer susceptibility to azoospermia factor c microrearrangements

    Comparative proteomics analysis of human FFPE testicular tissues reveals new candidate biomarkers for distinction among azoospermia types and subtypes.

    Get PDF
    Understanding molecular mechanisms that underpin azoospermia and discovery of biomarkers that could enable reliable, non-invasive diagnosis are highly needed. Using label-free data-independent LC-MS/MS acquisition coupled with ion mobility, we compared the FFPE testicular proteome of patients with obstructive (OA) and non-obstructive azoospermia (NOA) subtypes hypospermatogenesis (Hyp) and Sertoli cell-only syndrome (SCO). Out of 2044 proteins identified based on ≥2 peptides, 61 proteins had the power to quantitatively discriminate OA from NOA and 30 to quantitatively discriminate SCO from Hyp and OA. Among these, H1-6, RANBP1 and TKTL2 showed superior potential for quantitative discrimination among OA, Hyp and SCO. Integrin signaling pathway, adherens junction, planar cell polarity/convergent extension pathway and Dectin-1 mediated noncanonical NF-kB signaling were significantly associated with the proteins that could discriminate OA from NOA. Comparison with 2 transcriptome datasets revealed 278 and 55 co-differentially expressed proteins/genes with statistically significant positive correlation. Gene expression analysis by qPCR of 6 genes (H1-6, RANBP1, TKTL2, TKTL1, H2BC1, and ACTL7B) with the highest discriminatory power on protein level and the same regulation trend with transcriptomic datasets, confirmed the proteomics results. In summary, our results suggest some underlying pathways in azoospermia and broaden the range of potential novel candidates for diagnosis. SIGNIFICANCE: Using a comparative proteomics approach on testicular tissue we have identified several pathways associated with azoospermia and a number of testis-specific and germ cell-specific proteins that have the potential to pinpoint the type of spermatogenesis failure. Furthermore, comparison with transcriptomics datasets based on genome-wide gene expression analyses of human testis specimens from azoospermia patients identified proteins that could discriminate between obstructive and non-obstructive azoospermia subtypes on both protein and mRNA levels. Up to our knowledge, this is the first integrated comparative analysis of proteomics and transcriptomics data from testicular tissues. We believe that the data from our study contributes significantly to increase the knowledge of molecular mechanisms of azoospermia and pave the way for new investigations in regards to non-invasive diagnosis

    A One-Step Real-Time Multiplex PCR for Screening Y-Chromosomal Microdeletions without Downstream Amplicon Size Analysis

    Get PDF
    BACKGROUND: Y-chromosomal microdeletions (YCMD) are one of the major genetic causes for non-obstructive azoospermia. Genetic testing for YCMD by multiplex polymerase chain reaction (PCR) is an established method for quick and robust screening of deletions in the AZF regions of the Y-chromosome. Multiplex PCRs have the advantage of including a control gene in every reaction and significantly reducing the number of reactions needed to screen the relevant genomic markers. PRINCIPAL FINDINGS: The widely established "EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions (2004)" were used as a basis for designing a real-time multiplex PCR system, in which the YCMD can simply be identified by their melting points. For this reason, some AZF primers were substituted by primers for regions in their genomic proximity, and the ZFX/ZFY control primer was exchanged by the AMELX/AMELY control primer. Furthermore, we substituted the classical SybrGreen I dye by the novel and high-performing DNA-binding dye EvaGreen™ and put substantial effort in titrating the primer combinations in respect to optimal melting peak separation and peak size. SIGNIFICANCE: With these changes, we were able to develop a platform-independent and robust real-time based multiplex PCR, which makes the need for amplicon identification by electrophoretic sizing expendable. By using an open-source system for real-time PCR analysis, we further demonstrate the applicability of automated melting point and YCMD detection

    Androgen Insensitivity Syndrome DUE to Non-Coding Variation in the Androgen Receptor Gene: Review of the Literature and Case Report of a Patient with Mosaic c.-547C>T Variant

    No full text
    Sexual development (SD) is a complex process with strict spatiotemporal regulation of gene expression. Despite advancements in molecular diagnostics, disorders of sexual development (DSD) have a diagnostic rate of ~50%. Androgen insensitivity syndrome (AIS) represents the most common form of 46,XY DSD, with a spectrum of defects in androgen action. Considering the importance of very strict regulation of the SD, it is reasonable to assume that the genetic cause for proportion of the DSD lies in the non-coding part of the genome that regulates proper gene functioning. Here we present a patient with partial AIS (PAIS) due to a mosaic de novo c.-547C>T pathogenic variant in the 5′UTR of androgen receptor (AR) gene. The same mutation was previously described as inherited, in two unrelated patients with complete AIS (CAIS). Thus, our case further confirms the previous findings that variable gene expressivity could be attributed to mosaicism. Mutations in 5′UTR could create new upstream open reading frames (uORFs) or could disrupt the existing one. A recent systematic genome-wide study identified AR as a member of a subset of genes where modifications of uORFs represents an important disease mechanism. Only a small number of studies are reporting non-coding mutations in the AR gene and our case emphasizes the importance of molecular testing of the entire AR locus in AIS patients. The introduction of new methods for comprehensive molecular testing in routine genetic diagnosis, accompanied with new tools for in sillico analysis could improve the genetic diagnosis of AIS, and DSD in general

    Study of Three Single Nucleotide Polymorphisms in the Slc6a14 Gene in Association with Male Infertility

    No full text
    Although several genetic causes of male infertility are known, the condition in around 60.0-75.0% of infertile male patients appears to be idiopathic. In some, genetic causes may be polygenic and require several low-penetrance genes to produce a phenotype outcome. In others, pleiotropy, when a gene can produce several phenotypic traits, may be involved. We have investigated whether single nucleotide polymorphisms (SNPs) in the SLC6A14 [solute carrier family 6 (amino acid transporter), member 14] gene are associated with male infertility. This gene has previously been linked with obesity and cystic fibrosis, which are associated with male infertility. It has a role in the transport of tryptophan and synthesis of serotonin that are important for normal spermatogenesis and testicular function. We have analyzed three SNPs (rs2312054, rs2071877 and rs2011162) in 370 infertile men and 241 fertile controls from two different populations (Macedonian and Slovenian). We found that the rs2011162(G) allele and rs2312054(A)- rs2071877(C)-rs2011162(G) haplotype are present at lower frequencies in the infertile rather than the fertile men (p = 0.044 and p = 0.0144, respectively). We concluded that the SLC6A14 gene may be a population-specific, low-penetrance locus which confers susceptibility to male infertility/subfertility. Additional follow-up studies of a large number of infertile men of different ethnic backgrounds are needed to confirm such a susceptibility
    corecore