212 research outputs found

    Effect of nucleon exchange on projectile multifragmentation in the reactions of 28Si + 112Sn and 124Sn at 30 and 50 MeV/nucleon

    Full text link
    Multifragmentation of quasiprojectiles was studied in reactions of 28Si beam with 112Sn and 124Sn targets at projectile energies 30 and 50 MeV/nucleon. The quasiprojectile observables were reconstructed using isotopically identified charged particles with Z_f <= 5 detected at forward angles. The nucleon exchange between projectile and target was investigated using isospin and excitation energy of reconstructed quasiprojectile. For events with total reconstructed charge equal to the charge of the beam (Z_tot = 14) the influence of beam energy and target isospin on neutron transfer was studied in detail. Simulations employing subsequently model of deep inelastic transfer, statistical model of multifragmentation and software replica of FAUST detector array were carried out. A concept of deep inelastic transfer provides good description of production of highly excited quasiprojectiles. The isospin and excitation energy of quasiprojectile were described with good overall agreement. The fragment multiplicity, charge and isospin were reproduced satisfactorily. The range of contributing impact parameters was determined using backtracing procedure.Comment: 11 pages, 8 Postscript figures, LaTeX, to appear in Phys. Rev. C ( Dec 2000

    Freeze-out configuration properties in the 197Au + 197Au reaction at 23 AMeV

    Full text link
    Data from the experiment on the 197Au + 197Au reaction at 23 AMeV are analyzed with an aim to find signatures of exotic nuclear configurations such as toroid-shaped objects. The experimental data are compared with predictions of the ETNA code dedicated to look for such configurations and with the QMD model. A novel criterion of selecting events possibly resulting from the formation of exotic freeze-out configurations, "the efficiency factor", is tested. Comparison between experimental data and model predictions may indicate for the formation of flat/toroidal nuclear systems

    Two-Particle Correlation Functions for the 200-MeV 3-He + Ag Reaction

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Quark Gluon Plasma an Color Glass Condensate at RHIC? The perspective from the BRAHMS experiment

    Full text link
    We review the main results obtained by the BRAHMS collaboration on the properties of hot and dense hadronic and partonic matter produced in ultrarelativistic heavy ion collisions at RHIC. A particular focus of this paper is to discuss to what extent the results collected so far by BRAHMS, and by the other three experiments at RHIC, can be taken as evidence for the formation of a state of deconfined partonic matter, the so called quark-gluon-plasma (QGP). We also discuss evidence for a possible precursor state to the QGP, i.e. the proposed Color Glass Condensate.Comment: 32 pages, 18 figure

    Pseudorapidity distributions of charged particles from Au+Au collisions at the maximum RHIC energy, Sqrt(s_NN) = 200 GeV

    Get PDF
    We present charged particle densities as a function of pseudorapidity and collision centrality for the 197Au+197Au reaction at Sqrt{s_NN}=200 GeV. For the 5% most central events we obtain dN_ch/deta(eta=0) = 625 +/- 55 and N_ch(-4.7<= eta <= 4.7) = 4630+-370, i.e. 14% and 21% increases, respectively, relative to Sqrt{s_NN}=130 GeV collisions. Charged-particle production per pair of participant nucleons is found to increase from peripheral to central collisions around mid-rapidity. These results constrain current models of particle production at the highest RHIC energy.Comment: 4 pages, 5 figures; fixed fig. 5 caption; revised text and figures to show corrected calculation of and ; final version accepted for publicatio

    Centrality dependence of charged-particle pseudorapidity distributions from d+Au collisions at sqrt(s_{NN})=200 GeV

    Full text link
    Charged-particle pseudorapidity densities are presented for the d+Au reaction at sqrt{s_{NN}}=200 GeV with -4.2 <= eta <= 4.2$. The results, from the BRAHMS experiment at RHIC, are shown for minimum-bias events and 0-30%, 30-60%, and 60-80% centrality classes. Models incorporating both soft physics and hard, perturbative QCD-based scattering physics agree well with the experimental results. The data do not support predictions based on strong-coupling, semi-classical QCD. In the deuteron-fragmentation region the central 200 GeV data show behavior similar to full-overlap d+Au results at sqrt{s_{NN}}=19.4 GeV.Comment: 4 pages, 3figures; expanded discussion of uncertainties; added 60-80% centrality range; added additional discussion on centrality selection bia

    High Pt Hadron Spectra at High Rapidity

    Full text link
    We report the measurement of charged hadron production at different pseudo-rapidity values in deuteron+gold as well as proton+proton collisions at sqrtsNNsqrt{s_{NN}} = 200GeV at RHIC. The nuclear modification factors RdAuR_{dAu} and RcpR_{cp} are used to investigate new behaviors in the deuteron+gold system as function of rapidity and the centrality of the collisions respectively.Comment: Nine pages 4 figures to be published in the QM2004 Proceedings, typos corrected and one reference adde

    Scanning the phases of QCD with BRAHMS

    Full text link
    BRAHMS has the ability to study relativistic heavy ion collisions from the final freeze-out of hadrons all the way back to the initial wave-function of the gold nuclei. This is accomplished by studying hadrons with a very wide range of momenta and angles. In doing so we can scan various phases of QCD, from a hadron gas, to a quark gluon plasma and perhaps to a color glass condensate.Comment: 8 pages, 6 figures, proceedings of plenary talk at Quark Matter 2004 conferenc
    corecore