3,649 research outputs found

    Discovery of the first giant double radio relic in a galaxy cluster found in the PLANCK Sunyaev-Zel'dovich cluster survey: PLCK G287.0+32.9

    Full text link
    We report the discovery of large scale diffuse non-thermal radio emission in PLCK G287.0+32.9, an exceptionally hot (T ~ 13 keV), massive and luminous galaxy cluster, strongly detected by the PLANCK satellite in a recent, all-sky blind search for new clusters through Sunyaev-Zel'dovich effect. Giant Metrewave Radio telescope 150 MHz and Very Large Array 1.4 GHz radio data reveal a pair of giant (>1 Mpc) "arc" shaped peripheral radio-relics (signatures of shock waves) of unprecedented scale (linear separation ~4.4 Mpc at redshift 0.39), located at distances from the cluster center which are about 0.7 and 1.3 of the cluster's virial radius. Another possible giant relic and a radio-halo is detected closer to the cluster center. These relic sources are unique "signposts" of extremely energetic mergers and shocks (both ongoing and past), that are assembling and heating up this very massive galaxy cluster. They are also a probe of the filamentary cosmic-web structure beyond the cluster virial radius. Optical imaging with the IUCAA 2 meter telescope and XMM-Newton X-ray data confirm a very rich galaxy cluster with a morphologically disturbed core region, suggesting a dynamically perturbed merging system.Comment: This version matches with the published version in Astrophysical Journal Letter

    Far-Infrared to Millimeter Astrophysical Dust Emission. II: Comparison of the Two-Level Systems (TLS) model with Astronomical Data

    Full text link
    In a previous paper we proposed a new model for the emission by amorphous astronomical dust grains, based on solid-state physics. The model uses a description of the Disordered Charge Distribution (DCD) combined with the presence of Two-Level Systems (TLS) defects in the amorphous solid composing the grains. The goal of this paper is to confront this new model to astronomical observations of different Galactic environments in the FIR/submm, in order to derive a set of canonical model parameters to be used as a Galactic reference to be compared to in future Galactic and extragalactic studies. We confront the TLS model with existing astronomical data. We consider the average emission spectrum at high latitudes in our Galaxy as measured with FIRAS and WMAP, as well as the emission from Galactic compact sources observed with Archeops, for which an inverse relationship between the dust temperature and the emissivity spectral index has been evidenced. We show that, unlike models previously proposed which often invoke two dust components at different temperatures, the TLS model successfully reproduces both the shape of the Galactic SED and its evolution with temperature as observed in the Archeops data. The best TLS model parameters indicate a charge coherence length of \simeq 13 nm and other model parameters in broad agreement with expectations from laboratory studies of dust analogs. We conclude that the millimeter excess emission, which is often attributed to the presence of very cold dust in the diffuse ISM, is likely caused solely by TLS emission in disordered amorphous dust grains. We discuss the implications of the new model, in terms of mass determinations from millimeter continuum observations and the expected variations of the emissivity spectral index with wavelength and dust temperature. The implications for the analysis of the Herschel and Planck satellite data are discussed.Comment: Accepted for publication in A&A (16 pages, 9 figures, 6 tables

    Bubble size statistics during reionization from 21-cm tomography

    Get PDF
    The upcoming SKA1-Low radio interferometer will be sensitive enough to produce tomographic imaging data of the redshifted 21-cm signal from the Epoch of Reionization. Due to the non-Gaussian distribution of the signal, a power spectrum analysis alone will not provide a complete description of its properties. Here, we consider an additional metric which could be derived from tomographic imaging data, namely the bubble size distribution of ionized regions. We study three methods that have previously been used to characterize bubble size distributions in simulation data for the hydrogen ionization fraction – the spherical-average (SPA), mean-free-path (MFP) and friends-of-friends (FOF) methods – and apply them to simulated 21-cm data cubes. Our simulated data cubes have the (sensitivity-dictated) resolution expected for the SKA1-Low reionization experiment and we study the impact of both the light-cone (LC) and redshift space distortion (RSD) effects. To identify ionized regions in the 21-cm data we introduce a new, self-adjusting thresholding approach based on the K-Means algorithm. We find that the fraction of ionized cells identified in this way consistently falls below the mean volume-averaged ionized fraction. From a comparison of the three bubble size methods, we conclude that all three methods are useful, but that the MFP method performs best in terms of tracking the progress of reionization and separating different reionization scenarios. The LC effect is found to affect data spanning more than about 10 MHz in frequency (Δz ∼ 0.5). We find that RSDs only marginally affect the bubble size distributions

    Planck 2013 results. XXII. Constraints on inflation

    Get PDF
    We analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP large-angle polarization, constrain the scalar spectral index to be ns = 0:9603 _ 0:0073, ruling out exact scale invariance at over 5_: Planck establishes an upper bound on the tensor-to-scalar ratio of r < 0:11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models, preferring potentials with V00 < 0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n _ 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining dns=dln k = 0:0134 _ 0:0090. We verify these conclusions through a numerical analysis, which makes no slowroll approximation, and carry out a Bayesian parameter estimation and model-selection analysis for a number of inflationary models including monomial, natural, and hilltop potentials. For each model, we present the Planck constraints on the parameters of the potential and explore several possibilities for the post-inflationary entropy generation epoch, thus obtaining nontrivial data-driven constraints. We also present a direct reconstruction of the observable range of the inflaton potential. Unless a quartic term is allowed in the potential, we find results consistent with second-order slow-roll predictions. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit by __2 e_ _ 10; however, Bayesian evidence does not prefer these models. We constrain several single-field inflation models with generalized Lagrangians by combining power spectrum data with Planck bounds on fNL. Planck constrains with unprecedented accuracy the amplitude and possible correlation (with the adiabatic mode) of non-decaying isocurvature fluctuations. The fractional primordial contributions of cold dark matter (CDM) isocurvature modes of the types expected in the curvaton and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL), respectively. In models with arbitrarily correlated CDM or neutrino isocurvature modes, an anticorrelated isocurvature component can improve the _2 e_ by approximately 4 as a result of slightly lowering the theoretical prediction for the ` <_ 40 multipoles relative to the higher multipoles. Nonetheless, the data are consistent with adiabatic initial conditions

    The ROSAT-ESO Flux Limited X-ray Galaxy Cluster Survey (REFLEX II) I. Newly identified X-ray luminous clusters at z>=0.2

    Full text link
    We report 19 intermediate redshift clusters newly detected in the ROSAT All-Sky survey that are spectroscopically confirmed. They form a part of 911 objects in the REFLEX II cluster catalogue with a limiting flux of 1.8\times10^12 erg/s/cm2 in the 0.1-2.4 keV ROSAT band at redshift z >= 0.2. In addition we report three clusters from the REFLEX III supplementary catalogue, which contains objects below the REFLEX II flux limit but satisfies the redshift constraint above. These clusters are spectroscopically followed-up by our ESO NTT-EFOSC2 campaigns for the redshift measurement. We describe our observing and data reduction methods. We show how X-ray properties such as spectral hardness ratio and source extent can be used as important diagnostics in selecting galaxy cluster candidates. Physical properties of the clusters are subsequently calculated from the X-ray observations. This sample contains the high mass and intermediate-redshift galaxy clusters for astrophysical and cosmological applications.Comment: Astronomy and Astrophysics (in press

    Using CMB lensing to constrain the multiplicative bias of cosmic shear

    Full text link
    Weak gravitational lensing is one of the key probes of cosmology. Cosmic shear surveys aimed at measuring the distribution of matter in the universe are currently being carried out (Pan-STARRS) or planned for the coming decade (DES, LSST, EUCLID, WFIRST). Crucial to the success of these surveys is the control of systematics. In this work a new method to constrain one such family of systematics, known as multiplicative bias, is proposed. This method exploits the cross-correlation between weak lensing measurements from galaxy surveys and the ones obtained from high resolution CMB experiments. This cross-correlation is shown to have the power to break the degeneracy between the normalization of the matter power spectrum and the multiplicative bias of cosmic shear and to be able to constrain the latter to a few percent.Comment: 5 pages, 1 figur

    Cosmological CPT Violation and CMB Polarization Measurements

    Full text link
    In this paper we study the possibility of testing Charge-Parity-Time Reversal (CPT) symmetry with cosmic microwave background (CMB) experiments. We consider two kinds of Chern-Simons (CS) term, electromagnetic CS term and gravitational CS term, and study their effects on the CMB polarization power spectra in detail. By combining current CMB polarization measurements, the seven-year WMAP, BOOMERanG 2003 and BICEP observations, we obtain a tight constraint on the rotation angle Δα=2.28±1.02\Delta\alpha=-2.28\pm1.02 deg (1σ1\,\sigma), indicating a 2.2σ2.2\,\sigma detection of the CPT violation. Here, we particularly take the systematic errors of CMB measurements into account. After adding the QUaD polarization data, the constraint becomes 1.34<Δα<0.82-1.34<\Delta\alpha<0.82 deg at 95% confidence level. When comparing with the effect of electromagnetic CS term, the gravitational CS term could only generate TB and EB power spectra with much smaller amplitude. Therefore, the induced parameter ϵ\epsilon can not be constrained from the current polarization data. Furthermore, we study the capabilities of future CMB measurements, Planck and CMBPol, on the constraints of Δα\Delta\alpha and ϵ\epsilon. We find that the constraint of Δα\Delta\alpha can be significantly improved by a factor of 15. Therefore, if this rotation angle effect can not be taken into account properly, the constraints of cosmological parameters will be biased obviously. For the gravitational CS term, the future Planck data still can not constrain ϵ\epsilon very well, if the primordial tensor perturbations are small, r<0.1r <0.1. We need the more accurate CMBPol experiment to give better constraint on ϵ\epsilon.Comment: 11 pages, 5 figures, 4 tables, Accepted for publication in JCA

    MUFASA: The strength and evolution of galaxy conformity in various tracers

    Get PDF
    We investigate galaxy conformity using the Mufasa cosmological hydrodynamical simulation. We show a bimodal distribution in galaxy colour with radius, albeit with too many low-mass quenched satellite galaxies compared to observations. Mufasa produces conformity in observed properties such as colour, sSFR, and Hi content; i.e neighbouring galaxies have similar properties. We see analogous trends in other properties such as in environment, stellar age, H2 content, and metallicity. We intro- duce quantifying conformity using S(R), measuring the relative difference in upper and lower quartile properties of the neighbours.We show that low-mass and non-quenched haloes have weak conformity (S(R) < 0.5) extending to large projected radii R in all properties, while high-mass and quenched haloes have strong conformity (S(R) ~ 1) that diminishes rapidly with R and disappears at R & 1 Mpc. S(R) is strongest for environment in low-mass haloes, and sSFR (or colour) in high-mass haloes, and is dominated by one-halo conformity with the exception of Hi in small haloes. Metal- licity shows a curious anti-conformity in massive haloes. Tracking the evolution of conformity for z = 0 galaxies back in time shows that conformity broadly emerges as a late-time (z < 1) phenomenon. However, for fixed halo mass bins, conformity is fairly constant with redshift out to z > 2. These trends are consistent with the idea that strong conformity only emerges once haloes grow above Mufasa’s quenching mass scale of ~ 1012M⊙. A quantitative measure of conformity in various properties, along with its evolution, thus represents a new and stringent test of the impact of quenching on environment within current galaxy formation models.ScopusIS

    Impact on the tensor-to-scalar ratio of incorrect Galactic foreground modelling

    Full text link
    A key goal of many Cosmic Microwave Background experiments is the detection of gravitational waves, through their B-mode polarization signal at large scales. To extract such a signal requires modelling contamination from the Galaxy. Using the Planck experiment as an example, we investigate the impact of incorrectly modelling foregrounds on estimates of the polarized CMB, quantified by the bias in tensor-to-scalar ratio r, and optical depth tau. We use a Bayesian parameter estimation method to estimate the CMB, synchrotron, and thermal dust components from simulated observations spanning 30-353 GHz, starting from a model that fits the simulated data, returning r<0.03 at 95% confidence for an r=0 model, and r=0.09+-0.03 for an r=0.1 model. We then introduce a set of mismatches between the simulated data and assumed model. Including a curvature of the synchrotron spectral index with frequency, but assuming a power-law model, can bias r high by ~1-sigma (delta r ~ 0.03). A similar bias is seen for thermal dust with a modified black-body frequency dependence, incorrectly modelled as a power-law. If too much freedom is allowed in the model, for example fitting for spectral indices in 3 degree pixels over the sky with physically reasonable priors, we find r can be biased up to ~3-sigma high by effectively setting the indices to the wrong values. Increasing the signal-to-noise ratio by reducing parameters, or adding additional foreground data, reduces the bias. We also find that neglecting a 1% polarized free-free or spinning dust component has a negligible effect on r. These tests highlight the importance of modelling the foregrounds in a way that allows for sufficient complexity, while minimizing the number of free parameters.Comment: 11 pages, 7 figures, submitted to MNRA
    corecore