9 research outputs found

    The \u3ci\u3eLATERAL ROOT DENSITY\u3c/i\u3e gene regulates root growth during water stress in wheat

    Get PDF
    Drought stress is the major limiting factor in agriculture. Wheat, which is the most widely grown crop in the world, is predominantly cultivated in drought-prone rainfed environments. Since roots play a critical role in water uptake, root response to water limitations is an important component for enhancing wheat adaptation. In an effort to discover novel genetic sources for improving wheat adaptation, we characterized a wheat translocation line with a chromosomal segment from Agropyron elongatum, a wild relative of wheat, which unlike common wheat maintains root growth under limited-water conditions. By exploring the root transcriptome data, we found that reduced transcript level of LATERAL ROOT DENSITY (LRD) gene under limited water in the Agropyron translocation line confers it the ability to maintain root growth. The Agropyron allele of LRD is down-regulated in response to water limitation in contrast with the wheat LRD allele, which is up-regulated by water deficit stress. Suppression of LRD expression in wheat RNAi plants confers the ability to maintain root growth under water limitation. We show that exogenous gibberellic acid (GA) promotes lateral root growth and present evidence for the role of GA in mediating the differential regulation of LRD between the common wheat and the Agropyron alleles under water stress. Suppression of LRD also had a positive pleiotropic effect on grain size and number under optimal growth conditions. Collectively, our findings suggest that LRD can be potentially useful for improving wheat response to water stress and altering yield components

    Downregulation of a CYP74 Rubber Particle Protein Increases Natural Rubber Production in \u3ci\u3eParthenium argentatum\u3c/i\u3e

    Get PDF
    We report functional genomics studies of a CYP74 rubber particle protein from Parthenium argentatum, commonly called guayule. Previously identified as an allene oxide synthase (AOS), this CYP74 constitutes the most abundant protein found in guayule rubber particles. Transgenic guayule lines with AOS gene expression down-regulated by RNAi (AOSi) exhibited strong phenotypes that included agricultural traits conducive to enhancing rubber yield. AOSi lines had higher leaf and stem biomass, thicker stembark tissues, increased stem branching and improved net photosynthetic rate. Importantly, the rubber content was significantly increased in AOSi lines compared to the wild-type (WT), vector control and AOS overexpressing (AOSoe) lines, when grown in controlled environments both in tissue-culture media and in greenhouse/growth chambers. Rubber particles from AOSi plants consistently had less AOS particle-associated protein, and lower activity (for conversion of 13-HPOT to allene oxide). Yet plants with downregulated AOS showed higher rubber transferase enzyme activity. The increase in biomass in AOSi lines was associated with not only increases in the rate of photosynthesis and non-photochemical quenching (NPQ), in the cold, but also in the content of the phytohormone SA, along with a decrease in JA, GAs, and ABA. The increase in biosynthetic activity and rubber content could further result from the negative regulation of AOS expression by high levels of salicylic acid in AOSi lines and when introduced exogenously. It is apparent that AOS in guayule plays a pivotal role in rubber production and plant growth

    Potential of Industrial Hemp for Phytoremediation of Heavy Metals

    No full text
    The accumulation of anthropogenic heavy metals in soil is a major form of pollution. Such potentially toxic elements are nonbiodegradable and persist for many years as threats to human and environmental health. Traditional forms of remediation are costly and potentially damaging to the land. An alternative strategy is phytoremediation, where plants are used to capture metals from the environment. Industrial hemp (Cannabis sativa) is a promising candidate for phytoremediation. Hemp has deep roots and is tolerant to the accumulation of different metals. In addition, the crop biomass has many potential commercial uses after harvesting is completed. Furthermore, the recent availability of an annotated genome sequence provides a powerful tool for the bioengineering of C. sativa for better phytoremediation

    Potential of Industrial Hemp for Phytoremediation of Heavy Metals

    No full text
    The accumulation of anthropogenic heavy metals in soil is a major form of pollution. Such potentially toxic elements are nonbiodegradable and persist for many years as threats to human and environmental health. Traditional forms of remediation are costly and potentially damaging to the land. An alternative strategy is phytoremediation, where plants are used to capture metals from the environment. Industrial hemp (Cannabis sativa) is a promising candidate for phytoremediation. Hemp has deep roots and is tolerant to the accumulation of different metals. In addition, the crop biomass has many potential commercial uses after harvesting is completed. Furthermore, the recent availability of an annotated genome sequence provides a powerful tool for the bioengineering of C. sativa for better phytoremediation

    The \u3ci\u3eLATERAL ROOT DENSITY\u3c/i\u3e gene regulates root growth during water stress in wheat

    Get PDF
    Drought stress is the major limiting factor in agriculture. Wheat, which is the most widely grown crop in the world, is predominantly cultivated in drought-prone rainfed environments. Since roots play a critical role in water uptake, root response to water limitations is an important component for enhancing wheat adaptation. In an effort to discover novel genetic sources for improving wheat adaptation, we characterized a wheat translocation line with a chromosomal segment from Agropyron elongatum, a wild relative of wheat, which unlike common wheat maintains root growth under limited-water conditions. By exploring the root transcriptome data, we found that reduced transcript level of LATERAL ROOT DENSITY (LRD) gene under limited water in the Agropyron translocation line confers it the ability to maintain root growth. The Agropyron allele of LRD is down-regulated in response to water limitation in contrast with the wheat LRD allele, which is up-regulated by water deficit stress. Suppression of LRD expression in wheat RNAi plants confers the ability to maintain root growth under water limitation. We show that exogenous gibberellic acid (GA) promotes lateral root growth and present evidence for the role of GA in mediating the differential regulation of LRD between the common wheat and the Agropyron alleles under water stress. Suppression of LRD also had a positive pleiotropic effect on grain size and number under optimal growth conditions. Collectively, our findings suggest that LRD can be potentially useful for improving wheat response to water stress and altering yield components

    The \u3ci\u3eLATERAL ROOT DENSITY\u3c/i\u3e gene regulates root growth during water stress in wheat

    Get PDF
    Drought stress is the major limiting factor in agriculture. Wheat, which is the most widely grown crop in the world, is predominantly cultivated in drought-prone rainfed environments. Since roots play a critical role in water uptake, root response to water limitations is an important component for enhancing wheat adaptation. In an effort to discover novel genetic sources for improving wheat adaptation, we characterized a wheat translocation line with a chromosomal segment from Agropyron elongatum, a wild relative of wheat, which unlike common wheat maintains root growth under limited-water conditions. By exploring the root transcriptome data, we found that reduced transcript level of LATERAL ROOT DENSITY (LRD) gene under limited water in the Agropyron translocation line confers it the ability to maintain root growth. The Agropyron allele of LRD is down-regulated in response to water limitation in contrast with the wheat LRD allele, which is up-regulated by water deficit stress. Suppression of LRD expression in wheat RNAi plants confers the ability to maintain root growth under water limitation. We show that exogenous gibberellic acid (GA) promotes lateral root growth and present evidence for the role of GA in mediating the differential regulation of LRD between the common wheat and the Agropyron alleles under water stress. Suppression of LRD also had a positive pleiotropic effect on grain size and number under optimal growth conditions. Collectively, our findings suggest that LRD can be potentially useful for improving wheat response to water stress and altering yield components. Includes supplementary material

    Downregulation of a CYP74 Rubber Particle Protein Increases Natural Rubber Production in \u3ci\u3eParthenium argentatum\u3c/i\u3e

    Get PDF
    We report functional genomics studies of a CYP74 rubber particle protein from Parthenium argentatum, commonly called guayule. Previously identified as an allene oxide synthase (AOS), this CYP74 constitutes the most abundant protein found in guayule rubber particles. Transgenic guayule lines with AOS gene expression down-regulated by RNAi (AOSi) exhibited strong phenotypes that included agricultural traits conducive to enhancing rubber yield. AOSi lines had higher leaf and stem biomass, thicker stembark tissues, increased stem branching and improved net photosynthetic rate. Importantly, the rubber content was significantly increased in AOSi lines compared to the wild-type (WT), vector control and AOS overexpressing (AOSoe) lines, when grown in controlled environments both in tissue-culture media and in greenhouse/growth chambers. Rubber particles from AOSi plants consistently had less AOS particle-associated protein, and lower activity (for conversion of 13-HPOT to allene oxide). Yet plants with downregulated AOS showed higher rubber transferase enzyme activity. The increase in biomass in AOSi lines was associated with not only increases in the rate of photosynthesis and non-photochemical quenching (NPQ), in the cold, but also in the content of the phytohormone SA, along with a decrease in JA, GAs, and ABA. The increase in biosynthetic activity and rubber content could further result from the negative regulation of AOS expression by high levels of salicylic acid in AOSi lines and when introduced exogenously. It is apparent that AOS in guayule plays a pivotal role in rubber production and plant growth

    Guayule as an alternative crop for natural rubber production grown in B- and Se-laden soil in Central California

    No full text
    The potential of growing guayule (Parthenium argentatum A. Gray) as an alternative crop for saline, boron- and selenium-laden soils in the Westside of central California was evaluated in both greenhouse and drainage sediment field experiments. In the greenhouse experiment, salt and boron (B) tolerance and selenium (Se) accumulation were evaluated in guayule accessions AZ-1 thru AZ-6 grown in saline soil and irrigated with simulated saline drainage water. The guayule accessions AZ1, AZ5, and AZ6 tolerated salinity and B levels better than the others. Consequently, AZ1, AZ5, and AZ6 were then planted in field sediment plots with slight salinity and moderate B levels. In both greenhouse and field studies, concentrations of Se, B, and Na in the leaveswere as high as 0.6–8 mg/kg dry weight (DW), 2000 mg/kg DW, and 17,500 mg/kg DW, respectively, in both experiments. In both experiments, concentrations of rubber and resin ranged from 4 to 14 w/w% in the stems, and applied salinity increased rubber and resin production in some accessions. This two-phase study provides additional evidence for guayule accessions (AZ1–6) as a promising rubber-producing crop that tolerates saline irrigation water in poor quality soils. In addition, guayule may be useful in the gentle phytoremediation of Se in poor quality soils or in soils irrigated with Se-laden drainage water.Published versio
    corecore