87 research outputs found

    An acidic region of the 89K murine cytomegalovirus immediate early protein interacts with DNA

    Get PDF
    The product of the ie 1 gene, the regulatory immediate early protein pp89 of murine cytomegalovirus (MCMV), interacts with core histones, which can mediate the association of pp89 with DNA. We report the capacity of pp89 to interact directly with DNA in the absence of cellular proteins. After separation of proteins by SDS–PAGe, pp89 bound ds- and ssDNA, with a preference for ssDNA. Binding to specific DNA sequences in the MCMV genome was not detected. The DNA-binding region of pp89 was located to amino acids 438 to 534 by analysis of deletion mutants expressed as -galactosidase or TrpE fusion proteins. This region is identical to the highly acidic C-terminal region spanning amino acids 424 to 532. The human cytomegalovirus IE1 protein, which contains a similar extended C-terminal acidic region, does not react with DNA under the same experimental conditions

    Presentation of an Immunodominant Immediate-Early CD8+ T Cell Epitope Resists Human Cytomegalovirus Immunoevasion.

    Get PDF
    Control of human cytomegalovirus (HCMV) depends on CD8+ T cell responses that are shaped by an individual's repertoire of MHC molecules. MHC class I presentation is modulated by a set of HCMV-encoded proteins. Here we show that HCMV immunoevasins differentially impair T cell recognition of epitopes from the same viral antigen, immediate-early 1 (IE-1), that are presented by different MHC class I allotypes. In the presence of immunoevasins, HLA-A- and HLA-B-restricted T cell clones were ineffective, but HLA-C*0702-restricted T cell clones recognized and killed infected cells. Resistance of HLA-C*0702 to viral immunoevasins US2 and US11 was mediated by the alpha3 domain and C-terminal region of the HLA heavy chain. In healthy donors, HLA-C*0702-restricted T cells dominated the T cell response to IE-1. The same HLA-C allotype specifically protected infected cells from attack by NK cells that expressed a corresponding HLA-C-specific KIR. Thus, allotype-specific viral immunoevasion allows HCMV to escape control by NK cells and HLA-A- and HLA-B-restricted T cells, while the virus becomes selectively vulnerable to an immunodominant population of HLA-C-restricted T cells. Our work identifies a T cell population that may be of particular efficiency in HCMV-specific immunotherapy

    Shedding light on the elusive role of endothelial cells in cytomegalovirus dissemination.

    Get PDF
    Cytomegalovirus (CMV) is frequently transmitted by solid organ transplantation and is associated with graft failure. By forming the boundary between circulation and organ parenchyma, endothelial cells (EC) are suited for bidirectional virus spread from and to the transplant. We applied Cre/loxP-mediated green-fluorescence-tagging of EC-derived murine CMV (MCMV) to quantify the role of infected EC in transplantation-associated CMV dissemination in the mouse model. Both EC- and non-EC-derived virus originating from infected Tie2-cre(+) heart and kidney transplants were readily transmitted to MCMV-naïve recipients by primary viremia. In contrast, when a Tie2-cre(+) transplant was infected by primary viremia in an infected recipient, the recombined EC-derived virus poorly spread to recipient tissues. Similarly, in reverse direction, EC-derived virus from infected Tie2-cre(+) recipient tissues poorly spread to the transplant. These data contradict any privileged role of EC in CMV dissemination and challenge an indiscriminate applicability of the primary and secondary viremia concept of virus dissemination

    A “Coiled-Coil” Motif Is Important for Oligomerization and DNA Binding Properties of Human Cytomegalovirus Protein UL77

    Get PDF
    Human cytomegalovirus (HCMV) UL77 gene encodes the essential protein UL77, its function is characterized in the present study. Immunoprecipitation identified monomeric and oligomeric pUL77 in HCMV infected cells. Immunostaining of purified virions and subviral fractions showed that pUL77 is a structural protein associated with capsids. In silico analysis revealed the presence of a coiled-coil motif (CCM) at the N-terminus of pUL77. Chemical cross-linking of either wild-type pUL77 or CCM deletion mutant (pUL77ΔCCM) implicated that CCM is critical for oligomerization of pUL77. Furthermore, co-immunoprecipitations of infected and transfected cells demonstrated that pUL77 interacts with the capsid-associated DNA packaging motor components, pUL56 and pUL104, as well as the major capsid protein. The ability of pUL77 to bind dsDNA was shown by an in vitro assay. Binding to certain DNA was further confirmed by an assay using biotinylated 36-, 250-, 500-, 1000-meric dsDNA and 966-meric HCMV-specific dsDNA designed for this study. The binding efficiency (BE) was determined by image processing program defining values above 1.0 as positive. While the BE of the pUL56 binding to the 36-mer bio-pac1 containing a packaging signal was 10.0±0.63, the one for pUL77 was only 0.2±0.03. In contrast to this observation the BE of pUL77 binding to bio-500 bp or bio-1000 bp was 2.2±0.41 and 4.9±0.71, respectively. By using pUL77ΔCCM it was demonstrated that this protein could not bind to dsDNA. These data indicated that pUL77 (i) could form homodimers, (ii) CCM of pUL77 is crucial for oligomerization and (iii) could bind to dsDNA in a sequence independent manner

    Human Cytomegalovirus Fcγ Binding Proteins gp34 and gp68 Antagonize Fcγ Receptors I, II and III

    Get PDF
    Human cytomegalovirus (HCMV) establishes lifelong infection with recurrent episodes of virus production and shedding despite the presence of adaptive immunological memory responses including HCMV immune immunoglobulin G (IgG). Very little is known how HCMV evades from humoral and cellular IgG-dependent immune responses, the latter being executed by cells expressing surface receptors for the Fc domain of IgG (FcγRs). Remarkably, HCMV expresses the RL11-encoded gp34 and UL119-118-encoded gp68 type I transmembrane glycoproteins which bind Fcγ with nanomolar affinity. Using a newly developed FcγR activation assay, we tested if the HCMV-encoded Fcγ binding proteins (HCMV FcγRs) interfere with individual host FcγRs. In absence of gp34 or/and gp68, HCMV elicited a much stronger activation of FcγRIIIA/CD16, FcγRIIA/CD32A and FcγRI/CD64 by polyclonal HCMV-immune IgG as compared to wildtype HCMV. gp34 and gp68 co-expression culminates in the late phase of HCMV replication coinciding with the emergence of surface HCMV antigens triggering FcγRIII/CD16 responses by polyclonal HCMV-immune IgG. The gp34- and gp68-dependent inhibition of HCMV immune IgG was fully reproduced when testing the activation of primary human NK cells. Their broad antagonistic function towards FcγRIIIA, FcγRIIA and FcγRI activation was also recapitulated in a gain-of-function approach based on humanized monoclonal antibodies (trastuzumab, rituximab) and isotypes of different IgG subclasses. Surface immune-precipitation showed that both HCMV-encoded Fcγ binding proteins have the capacity to bind trastuzumab antibody-HER2 antigen complexes demonstrating simultaneous linkage of immune IgG with antigen and the HCMV inhibitors on the plasma membrane. Our studies reveal a novel strategy by which viral FcγRs can compete for immune complexes against various Fc receptors on immune cells, dampening their activation and antiviral immunity.DFG grant He 2526/6-2.European Commission grants QLRT-2001-01112 and MRTN-CT-2005-019248.Helmholtz Association through VISTRIE VH-VI-242.UCR::Vicerrectoría de Docencia::Salud::Facultad de Microbiologí

    Eidonomie und Gespinstbau der Juvenilstadien von Leptomorphus Walkeri Curtis 1831 (Diptera, Mycetophilidae)

    No full text
    Volume: 3Start Page: 11End Page: 2

    Integrierte oekologische Analyse des Dniesters und seines Einzugsgebietes als Modell fuer die Entwicklung einer Flusslandschaft in Osteuropa Abschlussbericht

    No full text
    SIGLEAvailable from TIB Hannover: DtF QN1(49,23) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie, Bonn (Germany)DEGerman
    corecore