28 research outputs found

    Melanopsin-expressing amphioxus photoreceptors transduce light via a phospholipase C signaling cascade

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e29813, doi:10.1371/journal.pone.0029813.Melanopsin, the receptor molecule that underlies light sensitivity in mammalian ‘circadian’ receptors, is homologous to invertebrate rhodopsins and has been proposed to operate via a similar signaling pathway. Its downstream effectors, however, remain elusive. Melanopsin also expresses in two distinct light-sensitive cell types in the neural tube of amphioxus. This organism is the most basal extant chordate and can help outline the evolutionary history of different photoreceptor lineages and their transduction mechanisms; moreover, isolated amphioxus photoreceptors offer unique advantages, because they are unambiguously identifiable and amenable to single-cell physiological assays. In the present study whole-cell patch clamp recording, pharmacological manipulations, and immunodetection were utilized to investigate light transduction in amphioxus photoreceptors. A Gq was identified and selectively localized to the photosensitive microvillar membrane, while the pivotal role of phospholipase C was established pharmacologically. The photocurrent was profoundly depressed by IP3 receptor antagonists, highlighting the importance of IP3 receptors in light signaling. By contrast, surrogates of diacylglycerol (DAG), as well as poly-unsaturated fatty acids failed to activate a membrane conductance or to alter the light response. The results strengthen the notion that calcium released from the ER via IP3-sensitive channels may fulfill a key role in conveying - directly or indirectly - the melanopsin-initiated light signal to the photoconductance; moreover, they challenge the dogma that microvillar photoreceptors and phoshoinositide-based light transduction are a prerogative of invertebrate eyes.This work was supported by the National Science Foundation of the USA (grant 0918930)

    Limitations of Gene Duplication Models: Evolution of Modules in Protein Interaction Networks

    Get PDF
    It has been generally acknowledged that the module structure of protein interaction networks plays a crucial role with respect to the functional understanding of these networks. In this paper, we study evolutionary aspects of the module structure of protein interaction networks, which forms a mesoscopic level of description with respect to the architectural principles of networks. The purpose of this paper is to investigate limitations of well known gene duplication models by showing that these models are lacking crucial structural features present in protein interaction networks on a mesoscopic scale. This observation reveals our incomplete understanding of the structural evolution of protein networks on the module level

    Diversity, Phylogeny and Expression Patterns of Pou and Six Homeodomain Transcription Factors in Hydrozoan Jellyfish Craspedacusta sowerbyi

    Get PDF
    Formation of all metazoan bodies is controlled by a group of selector genes including homeobox genes, highly conserved across the entire animal kingdom. The homeobox genes from Pou and Six classes are key members of the regulation cascades determining development of sensory organs, nervous system, gonads and muscles. Besides using common bilaterian models, more attention has recently been targeted at the identification and characterization of these genes within the basal metazoan phyla. Cnidaria as a diploblastic sister group to bilateria with simple and yet specialized organs are suitable models for studies on the sensory organ origin and the associated role of homeobox genes. In this work, Pou and Six homeobox genes, together with a broad range of other sensory-specific transcription factors, were identified in the transcriptome of hydrozoan jellyfish Craspedacusta sowerbyi. Phylogenetic analyses of Pou and Six proteins revealed cnidarian-specific sequence motifs and contributed to the classification of individual factors. The majority of the Craspedacusta sowerbyi Pou and Six homeobox genes are predominantly expressed in statocysts, manubrium and nerve ring, the tissues with sensory and nervous activities. The described diversity and expression patterns of Pou and Six factors in hydrozoan jellyfish highlight their evolutionarily conserved functions. This study extends the knowledge of the cnidarian genome complexity and shows that the transcriptome of hydrozoan jellyfish is generally rich in homeodomain transcription factors employed in the regulation of sensory and nervous functions

    NOVOcan: a molecular link among selected glial cells.

    No full text
    The nervous system is generated from cells lining the ventricular system. Our understanding of the fate potentials and lineage relationships of these cells is being re-evaluated, both because of recent demonstrations that radial glia can generate neurons and because of the identification of fate-determining genes. A variety of intrinsic and extrinsic molecules, including proteoglycans, regulate embryonic and postnatal brain development. Using probes modeled after species conserved domains of heparan sulfate proteoglycans, we cloned a novel gene called novocan, raised monoclonal antibodies against a segment of the predicted amino acid sequence of the expressed protein (NOVOcan) and used the antibodies to establish the cell and tissue localization of NOVOcan in postnatal rat brains by immunohistochemistry. NOVOcan was expressed in cells lining the ventricles, including a variety of radial glia during early postnatal development. Later, as radial glia disappeared and ependymal cells appeared, NOVOcan was detected in ependymal cells and in tanycytes, a specialized form of ependymal cell resembling radial glia. NOVOcan was absent in two known progeny of radial glia, mature astrocytes and neurons. Whereas NOVOcan was also absent in mature oligodendrocytes (OLGs), it was present in OLG precursors in developing white matter. These studies set the stage for determining the roles of NOVOcan in brain cell lineage patterns as well as in other aspects of development
    corecore