43 research outputs found

    Full Boltzmann equations for leptogenesis including scattering

    Full text link
    We study the evolution of a cosmological baryon asymmetry produced via leptogenesis by means of the full classical Boltzmann equations, without the assumption of kinetic equilibrium and including all quantum statistical factors. Beginning with the full mode equations we derive the usual equations of motion for the right-handed neutrino number density and integrated lepton asymmetry, and show explicitly the impact of each assumption on these quantities. For the first time, we investigate also the effects of scattering of the right-handed neutrino with the top quark to leading order in the Yukawa couplings by means of the full Boltzmann equations. We find that in our full Boltzmann treatment the final lepton asymmetry can be suppressed by as much as a factor of 1.5 in the weak wash-out regime (K<1), compared to the usual integrated approach which assumes kinetic equilibrium and neglects quantum statistics. This suppression is in contrast with the enhancement seen in some previous studies that considered only decay and inverse decay of the right-handed neutrino. However, this suppression quickly decreases as we increase K. In the strong wash-out regime (K>1), the full Boltzmann treatment and the integrated approach give nearly identical final lepton asymmetries (within 10 % of each other at K>3). Finally, we show that the opposing effects of quantum statistics on decays/inverse decays and the scattering processes tend to reduce the net importance of scattering on leptogenesis in the full treatment compared to the integrated approach.Comment: 39 pages, 8 figures, typos corrected, replaced to match published versio

    Further Considerations on the CP Asymmetry in Heavy Majorana Neutrino Decays

    Get PDF
    We work out the thermodynamic equations for the decays and scatterings of heavy Majorana neutrinos including the constraints from unitarity. The Boltzmann equations depend on the CP asymmetry parameter which contains both, a self-energy and a vertex correction. At thermal equilibrium there is no net lepton asymmetry due to the CPT theorem and the unitarity constraint. We show explicitly that deviations from thermal equilibrium create the lepton asymmetry.Comment: 16 pages, LaTeX, 1 eps figure, 1 ps figur

    Leptogenesis with "Fuzzy Mass Shell" for Majorana Neutrinos

    Get PDF
    We study the mixing of elementary and composite particles. In quantum field theory the mixing of composite particles originates in the couplings of the constituent quarks and for neutrinos in self-energy diagrams. In the event that the incoming and outgoing neutrinos have different masses, the self-energy diagrams vanish because energy is not conserved but the finite decaying widths make the mixing possible. We can consider the neutrinos to be "fuzzy" states on their mass shell and the mixing is understood as the overlap of two wavefunctions. These considerations restrict the mass difference to be approximately equal to or smaller than the largest of the two widths: abs(M_i - M_j) lessorequal max(Gamma_i, Gamma_j).Comment: 11 pages, 1 figur

    Leptogenesis and neutrino parameters

    Get PDF
    We calculate the baryonic asymmetry of the universe in the baryogenesis-via-leptogenesis framework, assuming first a quark-lepton symmetry and then a charged-neutral lepton symmetry. We match the results with the experimentally favoured range. In the first case all the oscillation solutions to the solar neutrino problem, except the large mixing matter solution, can lead to the allowed range, but with fine tuning of the parameters. In the second case the general result is quite similar. Some related theoretical hints are discussed.Comment: RevTex, 21 pages with 8 figure

    Light Lepton Number Violating Sneutrinos and the Baryon Number of the Universe

    Get PDF
    Recent results of neutrino oscillation experiments point to a nonvanishing neutrino mass. Neutrino mass models favour Majorana-type neutrinos. In such circumstances it is natural that the supersymmetric counterpart of the neutrino, the sneutrino, bears also lepton number violating properties. On the other hand, the fact that the universe exhibits an asymmetry in the baryon and antibaryon numbers poses constraints on the extent of lepton number violation in the light sneutrino sector if the electroweak phase transition is second or weak first order. From the requirement that the Baryon Asymmetry of the Universe should not be washed out by sneutrino induced lepton number violating interactions and sphalerons below the critical temperature of the electroweak phase transition we find that the mass splitting of the light sneutrino mass states is compatible with the sneutrino Cold Dark Matter hypothesis only for heavy gauginos and opposite sign gaugino mass parameters.Comment: 13 pages, 4 figure

    Axino dark matter from thermal production

    Full text link
    The axino is a promising candidate for dark matter in the Universe. It is electrically and color neutral, very weakly interacting, and could be - as assumed in this study - the lightest supersymmetric particle, which is stable for unbroken R-parity. In supersymmetric extensions of the standard model, in which the strong CP problem is solved via the Peccei-Quinn mechanism, the axino arises naturally as the fermionic superpartner of the axion. We compute the thermal production rate of axinos in supersymmetric QCD. Using hard thermal loop resummation, we obtain a finite result in a gauge-invariant way, which takes into account Debye screening in the hot quark-gluon-squark-gluino plasma. The relic axino abundance from thermal scatterings after inflation is evaluated. We find that thermally produced axinos could provide the dominant part of cold dark matter, for example, for an axino mass of 100 keV and a reheating temperature of 10^6 GeV.Comment: 33 pages, 7 figures, 1 table, erratum adde

    Sleptogenesis

    Get PDF
    We propose that the observed baryon asymmetry of the Universe can naturally arise from a net asymmetry generated in the sleptonic sector at fairly low reheat temperatures. The best candidate is indeed the right-handed sneutrino. The initial asymmetry in the sneutrino sector can be produced from the decay of the inflaton, and is subsequently transferred into the Standard Model (s)lepton doublet via the decay of the sneutrino. The active sphalerons then reprocess the leptonic asymmetry into the baryonic asymmetry. The marked feature of this scenario is that the lepton asymmetry is decoupled from the neutrino Yukawa sector. We exhibit that our scenario can be embedded within models which seek the origin of a tiny mass for neutrinos.Comment: 7 revtex pages, 2 figures (uses axodraw). Minor changes for better clarification and updated references. Final version to appear in Phys. Rev.

    Gravitino constraints on models of neutrino masses and leptogenesis

    Get PDF
    In the supersymmetric extensions of the standard model, neutrino masses and leptogenesis requires existence of new particles. We point out that if these particles with lepton number violating interactions have standard model gauge interactions, then they may not be created after reheating because of the gravitino problem. This will rule out all existing models of neutrino masses and leptogenesis, except the one with right-handed singlet neutrinos.Comment: 12 pages latex file with one postscript figur

    Leptogenesis from Soft Supersymmetry Breaking (Soft Leptogenesis)

    Full text link
    Soft leptogenesis is a scenario in which the cosmic baryon asymmetry is produced from a lepton asymmetry generated in the decays of heavy sneutrinos (the partners of the singlet neutrinos of the seesaw) and where the relevant sources of CP violation are the complex phases of soft supersymmetry-breaking terms. We explain the motivations for soft leptogenesis, and review its basic ingredients: the different CP-violating contributions, the crucial role played by thermal corrections, and the enhancement of the efficiency from lepton flavour effects. We also discuss the high temperature regime T>107T > 10^7 GeV in which the cosmic baryon asymmetry originates from an initial asymmetry of an anomalous RR-charge, and soft leptogenesis reembodies in RR-genesis.Comment: References updated. Some minor corrections to match the published versio

    Stable Superstring Relics and Ultrahigh Energy Cosmic Rays

    Get PDF
    One of the most intriguing experimental results of recent years is the observation of Ultrahigh Energy Cosmic Rays (UHECRs) above the GZK cutoff. Plausible candidates for the UHECR primaries are the decay products of a meta--stable matter state with mass of order O(10^{12-15 GeV}), which simultaneously is a good cold dark matter candidate. We study possible meta-stable matter states that arise from Wilson line breaking of GUT symmetries in semi-realistic heterotic string models. In the models that we study the exotic matter states can be classified according to patterns of SO(10) symmetry breaking. We show that cryptons, which are states that carry fractional electric charge ±1/2\pm1/2, and are confined by a hidden gauge group cannot produce viable dark matter. This is due to the fact that, in addition to the lightest neutral bound state, cryptons give rise to meta-stable charged bound states. However, these states may still account for the UHECR events. We argue that the uniton, which is an exotic Standard Model quark but carries ``fractional'' U(1)_{Z'} charge, as well as the singleton, which is a Standard Model singlet with ``fractional'' U(1)_{Z'} charge do provide viable dark matter candidates and can at the same time explain the observed UHECR events.Comment: 24 pages. 5 figure
    corecore