71 research outputs found

    Could incommensurability in sulfosalts be more common than thought? the case of meneghinite, CuPb13Sb7S24

    Get PDF
    The structure of meneghinite (CuPb13Sb7S24), from the Bottino mine in the Apuan Alps (Italy), has been solved and refined as an incommensurate structure in four-dimensional superspace. The structure is orthorhombic, superspace group Pnma(0β0)00s, cell parameters a = 24.0549 (3), b = 4.1291 (6), c = 11.3361 (16) Ã\u85, modulation vector q = 0.5433 (4)bâ\u88\u97. The structure was refined from 6604 reflections to a final R = 0.0479. The model includes modulation of both atomic positions and displacement parameters, as well as occupational waves. The driving forces stabilizing the modulated structure of meneghinite are linked to the occupation modulation of Cu and some of the Pb atoms. As a consequence of the Cu/[] and Pb/Sb modulations, three-to sevenfold coordinations of the M cations (Pb/Sb) occur in different parts of the structure. The almost bimodal distribution of the occupation of Cu/[] and Pb/Sb at M5 conforms with the coupled substitution Sb3+ + [] â\u86\u92 Pb2+ + Cu+, thus corroborating the hypothesis deduced previously for the incorporation of copper in the meneghinite structure. The very small departure (~0.54 versus 0.50) from the commensurate value of the modulation raises the question of whether other sulfosalts considered superstructures have been properly described, and, in this light, if incommensurate modulation in sulfosalts could be much more common than thought.The crystal structure of the mineral meneghinite, CuPb13Sb7S24, has been solved and refined as an incommensurate structure from X-ray single-crystal diffraction data in four-dimensional superspace. The very small departure from the commensurate value of the modulation raises the question of whether incommensurability in sulfosalts could be much more frequent than previously thought

    Giftgrubeite, CaMn2Ca2(AsO4)2(AsO3OH)2·4H2O, a new member of the hureaulite group from Sainte-Marie-aux-Mines, Haut-Rhin Department, Vosges, France

    Get PDF
    Giftgrubeite, ideally CaMn2Ca2(AsO4)2(AsO3OH)2·4H2O, is a new mineral occurring at the Giftgrube Mine, St Jacques vein, Rauenthal, Sainte-Marie-aux-Mines, Haut-Rhin Department, Grand Est, France and named after the type-locality. Giftgrubeite is mostly associated with Mn-bearing calcite, native arsenic, löllingite, and picropharmacolite. It is a recent secondary mineral, formed by alteration of the arsenical vein minerals after mining. Giftgrubeite occurs in colorless, rarely pearl white to pale yellow rosettes of brittle tabular crystals flattened on {1 0 0} and up to 0.2 mm in size. Hardness (Mohs) is 3 ½, Dmeas is 3.23(2) g·cm-3, Dcalc is 3.24 g·cm-3. The new mineral is biaxial negative without pleochroism. Measured 2V angle is ~72° and calculated 2V angle is 75.1°; the refractive indices measured in white light are: α = 1.630(2), β= 1.640(2) and γ = 1.646(2). The most prominent Raman bands are at 902, 885, 864, 851, 824, 797 and 759 cm-1. The empirical chemical formula is (Ca3.04Mn1.30Mg0.38Fe0.28)Σ5.00(AsO4)1.99(AsO3OH)2·4H2O. Giftgrubeite is monoclinic, C2/c, Z = 4, with a = 18.495(7) Å, b = 9.475(4) Å, c = 9.986(4) Å, β = 96.79(3)° and V = 1737.7(12) Å3. The six strongest lines in the X-ray powder diffraction pattern are [d in Å (I)(hkl)]: 3.33 (100)(-2 2 2), 3.18 (80)(2 2 2), 2.414 (60)(7 1 1), 4.80 (50)(-3 1 1), 4.65 (50)(-2 0 2) and 3.05 (50)(1 1 3). The structure of giftgrubeite was solved from the crystal retrieved from the type specimen by the charge-flipping algorithm. Giftgrubeite contains a well-known structure type parent to the hureaulite group of minerals, which is based upon an octahedral edge-sharing pentamers of M2+-polyhedra; pentamers linked into a loose framework by sharing corners with octahedra in adjacent pentamers and further by AsO4 and AsO3OH tetrahedra. There are three distinct octahedral sites: M1, M2, and M3. In the case of giftgrubeite, two of the M sites were found to be fully occupied by Ca; namely M1 and M3. The M2 site was then found to contain Mg besides dominant Mn. Considering the refined site occupancies, the structural formula for giftgrubeite is Ca3Mn1.30Mg0.70(AsO4)2(AsO3OH)2(H2O)4. Giftgrubeite is an ordered intermediate member between villyaellenite, MnMn2Ca2(AsO3OH)2(AsO4)2·4H2O and sainfeldite, CaCa2Ca2(AsO4)2(AsO3OH)2·4H2O

    The effect of chemical variability and weathering on Raman spectra of enargite and fahlore

    Get PDF
    Enargite (Cu3AsS4) and tennantite (Cu12As4S13) are typical As-bearing sulfides in intermediate-and high-sulfidation epithermal deposits. Trace and major element variations in enargite and tennantite and their substitution mechanisms are widely described. However, Raman spectra of the minerals with correlative quantitative chemical information are rarely documented, especially for enargite. Therefore, comparative electron and μ-Raman microprobe analyses were performed on enargite and fahlore grains. These spectra can be used in the industrial detection and subsequent removal of As-bearing sulfides prior to ore beneficiation in order to diminish the environmental impact of the metallurgical technologies. A simple Sb5+-As5+ substitution in enargite was confirmed by Raman analyses. Similarly, a complete solid solution series from tetrahedrite to tennantite (i.e., Sb3+-As3+ substitution) can be correlated with a gradual evolution in their Raman spectra. In turn, Te4+ occupies the As3+ and Sb3+ sites in fahlore by the coupled substitution Te4+gCu+g(As, Sb)3+g(Cu, Fe, Zn)2+. Accordingly, Raman bands of goldfieldite (Te-rich member) are strongly broadened compared with those of tetrahedrite and tennantite. A secondary phase with high porosity and a fibrous or wormlike texture was found in enargite in a weathered sample. The chemical composition, Raman spectrum, and X-ray diffraction signature of the secondary phase resemble tennantite. A gradual transformation of the primary enargite into this secondary phase was visualized by comparative electron and Raman microprobe mapping

    Supergene mineralisation of the uranium deposit Medvědín, the Krkonoše(Giant) Mts., Czech Republic

    No full text
    Oddělení geochemie a mineralogie (zrušeno)Section of Geochemistry and Mineralogy (obsolete)Přírodovědecká fakultaFaculty of Scienc

    Crystal chemistry of selected natural hydrated uranyl arsenates and phosphates of divalent transition metals and magnesium

    No full text
    Section of Geochemistry and Mineralogy (obsolete)Oddělení geochemie a mineralogie (zrušeno)Faculty of SciencePřírodovědecká fakult

    Mineralogy, Crystallography and Structural Complexity of Natural Uranyl Silicates

    No full text
    Naturally occurring uranyl silicates are common constituents of the oxidized parts (i.e., supergene zone) of various types of uranium deposits. Their abundance reflects the widespread distribution of Si4+ in the Earth’s crust and, therefore, in groundwaters. Up to date, 16 uranyl silicate minerals are known. Noteworthy is that the natural uranyl silicates are not extremely diverse regarding their crystal structures; it is a result of possible concentrations (activity) of Si4+ in aqueous solutions derived from dissolution of primary Si minerals or the composition of late hydrothermal fluids. Therefore, in natural systems, we distinguish in fact among two groups of uranyl silicate minerals: uranophane and weeksite-group. They differ in U:Si ratio (uranophane, 1:1; weeksite, 2:5) and they form under different conditions, reflected in distinctive mineral associations. An overview of crystal-chemistry is provided in this paper, along with the new structure data for few members of the uranophane group. Calculations of the structural complexity parameters for natural uranyl silicates are commented about as well as other groups of uranyl minerals; these calculations are also presented from the point of view of the mineral paragenesis and associations

    Supergene mineralisation of the uranium deposit Medvědín, the Krkonoše(Giant) Mts., Czech Republic

    No full text
    Oddělení geochemie a mineralogie (zrušeno)Section of Geochemistry and Mineralogy (obsolete)Přírodovědecká fakultaFaculty of Scienc
    corecore