15 research outputs found

    Microbial community development during syngas methanation in a trickle bed reactor with various nutrient sources

    Get PDF
    Microbial community development within an anaerobic trickle bed reactor (TBR) during methanation of syngas (56% H-2, 30% CO, 14% CO2) was investigated using three different nutrient media: defined nutrient medium (241 days), diluted digestate from a thermophilic co-digestion plant operating with food waste (200 days) and reject water from dewatered digested sewage sludge at a wastewater treatment plant (220 days). Different TBR operating periods showed slightly different performance that was not clearly linked to the nutrient medium, as all proved suitable for the methanation process. During operation, maximum syngas load was 5.33 L per L packed bed volume (pbv) & day and methane (CH4) production was 1.26 L CH4/L-pbv/d. Microbial community analysis with Illumina Miseq targeting 16S rDNA revealed high relative abundance (20-40%) of several potential syngas and acetate consumers within the genera Sporomusa, Spirochaetaceae, Rikenellaceae and Acetobacterium during the process. These were the dominant taxa except in a period with high flow rate of digestate from the food waste plant. The dominant methanogen in all periods was a member of the genus Methanobacterium, while Methanosarcina was also observed in the carrier community. As in reactor effluent, the dominant bacterial genus in the carrier was Sporomusa. These results show that syngas methanation in TBR can proceed well with different nutrient sources, including undefined medium of different origins. Moreover, the dominant syngas community remained the same over time even when non-sterilised digestates were used as nutrient medium

    Degradation of polycyclic aromatic hydrocarbons by actinomycetes

    Get PDF
    The potential of some actinomycetes to degrade polycyclic aromatic hydrocarbons (PAH) and the effect of co-substrates, plants and other additives on their degradation and bioavailability was studied. A glass bead system for growth of PAH-degrading actinomycetes in liquid culture was developed and used for the screening of strains for biosurfactant activity and phenanthrene degradation in the presence of different co-substrates. Indication of biosurfactant production by all tested strains was obtained with hexadecane and rapeseed oil as co-substrates but not with glucose. Rhodococcus sp. DSM 44126 was identified as R. wratislaviensis and found to be able to degrade phenanthrene and anthracene. An actinomycete with a high capacity to degrade phenanthrene and pyrene was isolated from an agricultural soil and identified as Mycobacterium LP1. The catabolic activity of both strains was studied in liquid cultures and in soil. Several additives were also tested for their effect on PAH degradation in soils. The surfactant Triton X-100, but not wheat straw, promoted PAH degradation in a soil with aged creosote by increasing the bioavailability of the compounds. The presence of plants increased the proportion of active microorganisms and enhanced PAH degradation, likely due to root exudates provided by the plants. In a PAH-spiked soil, the addition of rapeseed oil (1% w/w) stimulated the degradation of anthracene and benzo(a)pyrene mainly as a result of abiotic processes, but negatively affected the degradation of phenanthrene and pyrene, probably due to limitations in nutrient and oxygen supply. Based on these results, a new sequential treatment in two steps for cleaning PAH-contaminated soil was designed and tested using four different PAH as model substances. The first step consisted of the inoculation with Mycobacterium LP1, favouring biological degradation of low-molecular-weight PAH, and the second step consisted of the addition of rapeseed oil, which promoted the abiotic transformation, and probably also the solubilisation, of the high-molecular-weight PAH

    LÀkemedel i kÀllsorterade avloppsfraktioner - en kunskapssammanstÀllning

    No full text
    KĂ€llsorterande avloppssystem kan minska utslĂ€pp av lĂ€kemedelsrester till akvatiska miljöer och möjliggör samtidigt kretslopp av nĂ€ringsĂ€mnen. Kunskapen om lĂ€kemedels-förekomst i kĂ€llsorterade avloppsfraktioner Ă€r dock delvis bristfĂ€llig, liksom kunskapen om vilken reducerande effekt som erhĂ„lls i de behandlings- och hanteringsprocesser som anvĂ€nds för dessa fraktioner idag. Även kunskapen om vad som hĂ€nder i miljön Ă€r begrĂ€nsad vad gĂ€ller upptag i vĂ€xter, nedbrytning, transport och spridning. Syftet med projektet var att samla den kunskap som finns och den forskning som pĂ„gĂ„r relaterad till lĂ€kemedel i kĂ€llsorterade avloppsfraktioner i Sverige och internationellt, för att identifiera prioriterade frĂ„gestĂ€llningar framĂ„t. Projektet syftade Ă€ven till att beskriva hur behandling av avloppsfraktioner frĂ„n kĂ€llsorterande avloppssystem pĂ„verkar halterna av lĂ€kemedelsrester i slutprodukten. Projektet genomfördes utifrĂ„n en litteraturstudie med fokus pĂ„ genomförda och pĂ„gĂ„ende studier/forskning relaterad till lĂ€kemedel i kĂ€llsorterade avloppsfraktioner globalt. Inga analyser har genomförts inom projektet. De data över innehĂ„ll av lĂ€kemedelssubstanser i obehandlade och behandlade fraktioner som redovisas Ă€r hĂ€mtade frĂ„n tidigare genomförda studier. FörutsĂ€ttningarna för studier kring lĂ€kemedel i kĂ€llsorterade avloppsfraktioner varierar, vilket försvĂ„rar möjligheten att jĂ€mföra resultat och dra slutsatser kring innehĂ„ll och reduktion av lĂ€kemedel i kĂ€llsorterade avloppsfraktioner. De flesta studier behandlar urin. Merparten av behandlingsmetoderna för urin Ă€r utförda i labbskala medan studier pĂ„ klosettavloppsvatten Ă€r gjorda pĂ„ anlĂ€ggningar som Ă€r i drift idag. För latrin har endast en studie som behandlar lĂ€kemedel hittats. Olika behandlingsmetoder fungerar olika bra pĂ„ olika typer av lĂ€kemedelssubstanser. För urin har tester utförts med mĂ„nga olika behandlingstekniker. Av de som beaktats i denna studie Ă€r det endast ozon och UV-ljus som har en bred effekt och som till störst del reducerar de flesta lĂ€kemedelssubstanser som har analyserats i urin. För klosettavloppsvatten har tre behandlingsmetoder studerats. Ingen av metoderna reducerade alla lĂ€kemedel, men behandling med UASB-reaktor gav en god reduktion dĂ„ de flesta lĂ€kemedel som analyserats reducerades till ca 60 %. För latrin pĂ„verkades de flesta lĂ€kemedel varken av mesofil eller termofil rötning. De flesta studierna kring lĂ€kemedelssubstanser i miljön har fokus pĂ„ akvatiska system och informationen om hur substanserna beter sig i marken Ă€r begrĂ€nsade – bĂ„de vad gĂ€ller nedbrytning samt lĂ€kemedelsinnehĂ„ll i vĂ€xande gröda. Inom dessa omrĂ„den behövs mer forskning. LĂ€kemedel i kĂ€llsorterade avloppsfraktioner Ă€r ett komplext omrĂ„de dĂ€r flera kunskapsluckor finns och dĂ€r mer forskning behövs. Förhoppningsvis bidrar denna sammanstĂ€llning till en översiktlig bild av hur det kan se ut, vilken kunskap som finns inom omrĂ„det samt förenklar beslut och prioritering av framtida forskning.Systems with different source-separated toilet fractions (blackwater, fecal sludge and urine) can reduce the number of pharmaceuticals to the aquatic environment and at the same time allow circulation of nutrients. However, knowledge of the occurrence of pharmaceutical residues in source-separated toilet fractions is partly insufficient. There is also a lack of knowledge of how the different treatment processes effect the occurrence of pharmaceutical residues and if they are reduced or maintained thru different treatments. Knowledge of their faith in the environment is also limited, in terms of uptake in plants, degradation, transport and spreading. The purpose of this project was to gather current knowledge related to pharmaceutical residues in source-separated toilet fractions from both Sweden and internationally, to be able to identify prioritized research areas for the future. The project also aimed to describe how treatment of source-separated toilet fractions affects the levels of pharmaceutical residues in the final product. A review of literature was made, focusing on studies and research related to pharmaceutical residues in the different fractions. No analyzes have been carried out within this project. Data on the content of pharmaceutical residues in untreated and treated source-separated toilet fractions was collected from previous studies and summarized. The basis in the different studies varies a lot, which makes it difficult to compare the results of the content and reduction of pharmaceutical residues in the different source-separated toilet fractions. Most of the studies that was found treated pharmaceuticals residues in urine. Most of the treatment methods for urine are performed in lab scale while studies on blackwater are made on plants that are in operation today. For fecal sludge, only one study that treats pharmaceuticals residues has been found. Different treatment methods work differently on different types of pharmaceutical residues. For urine, there are studies with many different treatment techniques. Of those considered in this study, only ozone and UV-light have a broad effect and reduces most of the pharmaceutical residues that have been analyzed. Three treatment methods have been studied for blackwater. None of the methods reduced all pharmaceutical residues, but treatment with UASB reactor provided a good reduction as most pharmaceutical residues analyzed were reduced to about 60 %. For fecal sludge, most pharmaceutical residues were not affected by either mesophilic or thermophilic digestion. Most studies on pharmaceutical residues in the environment focus on aquatic systems and the information on how the pharmaceutical residues behave in the soil is limited - both in terms of degradation and content in growing crops. More research is needed in these areas. Pharmaceutical residues in source-separated toilet fractions are a complex area with several gaps of knowledge and more research is needed. Hopefully, this rapport contributes to an overview of some data and treatment processes and brings more knowledge into the area that simplifies decisions and prioritization of future research

    LÀkemedel i kÀllsorterade avloppsfraktioner - en kunskapssammanstÀllning

    No full text
    KĂ€llsorterande avloppssystem kan minska utslĂ€pp av lĂ€kemedelsrester till akvatiska miljöer och möjliggör samtidigt kretslopp av nĂ€ringsĂ€mnen. Kunskapen om lĂ€kemedels-förekomst i kĂ€llsorterade avloppsfraktioner Ă€r dock delvis bristfĂ€llig, liksom kunskapen om vilken reducerande effekt som erhĂ„lls i de behandlings- och hanteringsprocesser som anvĂ€nds för dessa fraktioner idag. Även kunskapen om vad som hĂ€nder i miljön Ă€r begrĂ€nsad vad gĂ€ller upptag i vĂ€xter, nedbrytning, transport och spridning. Syftet med projektet var att samla den kunskap som finns och den forskning som pĂ„gĂ„r relaterad till lĂ€kemedel i kĂ€llsorterade avloppsfraktioner i Sverige och internationellt, för att identifiera prioriterade frĂ„gestĂ€llningar framĂ„t. Projektet syftade Ă€ven till att beskriva hur behandling av avloppsfraktioner frĂ„n kĂ€llsorterande avloppssystem pĂ„verkar halterna av lĂ€kemedelsrester i slutprodukten. Projektet genomfördes utifrĂ„n en litteraturstudie med fokus pĂ„ genomförda och pĂ„gĂ„ende studier/forskning relaterad till lĂ€kemedel i kĂ€llsorterade avloppsfraktioner globalt. Inga analyser har genomförts inom projektet. De data över innehĂ„ll av lĂ€kemedelssubstanser i obehandlade och behandlade fraktioner som redovisas Ă€r hĂ€mtade frĂ„n tidigare genomförda studier. FörutsĂ€ttningarna för studier kring lĂ€kemedel i kĂ€llsorterade avloppsfraktioner varierar, vilket försvĂ„rar möjligheten att jĂ€mföra resultat och dra slutsatser kring innehĂ„ll och reduktion av lĂ€kemedel i kĂ€llsorterade avloppsfraktioner. De flesta studier behandlar urin. Merparten av behandlingsmetoderna för urin Ă€r utförda i labbskala medan studier pĂ„ klosettavloppsvatten Ă€r gjorda pĂ„ anlĂ€ggningar som Ă€r i drift idag. För latrin har endast en studie som behandlar lĂ€kemedel hittats. Olika behandlingsmetoder fungerar olika bra pĂ„ olika typer av lĂ€kemedelssubstanser. För urin har tester utförts med mĂ„nga olika behandlingstekniker. Av de som beaktats i denna studie Ă€r det endast ozon och UV-ljus som har en bred effekt och som till störst del reducerar de flesta lĂ€kemedelssubstanser som har analyserats i urin. För klosettavloppsvatten har tre behandlingsmetoder studerats. Ingen av metoderna reducerade alla lĂ€kemedel, men behandling med UASB-reaktor gav en god reduktion dĂ„ de flesta lĂ€kemedel som analyserats reducerades till ca 60 %. För latrin pĂ„verkades de flesta lĂ€kemedel varken av mesofil eller termofil rötning. De flesta studierna kring lĂ€kemedelssubstanser i miljön har fokus pĂ„ akvatiska system och informationen om hur substanserna beter sig i marken Ă€r begrĂ€nsade – bĂ„de vad gĂ€ller nedbrytning samt lĂ€kemedelsinnehĂ„ll i vĂ€xande gröda. Inom dessa omrĂ„den behövs mer forskning. LĂ€kemedel i kĂ€llsorterade avloppsfraktioner Ă€r ett komplext omrĂ„de dĂ€r flera kunskapsluckor finns och dĂ€r mer forskning behövs. Förhoppningsvis bidrar denna sammanstĂ€llning till en översiktlig bild av hur det kan se ut, vilken kunskap som finns inom omrĂ„det samt förenklar beslut och prioritering av framtida forskning.Systems with different source-separated toilet fractions (blackwater, fecal sludge and urine) can reduce the number of pharmaceuticals to the aquatic environment and at the same time allow circulation of nutrients. However, knowledge of the occurrence of pharmaceutical residues in source-separated toilet fractions is partly insufficient. There is also a lack of knowledge of how the different treatment processes effect the occurrence of pharmaceutical residues and if they are reduced or maintained thru different treatments. Knowledge of their faith in the environment is also limited, in terms of uptake in plants, degradation, transport and spreading. The purpose of this project was to gather current knowledge related to pharmaceutical residues in source-separated toilet fractions from both Sweden and internationally, to be able to identify prioritized research areas for the future. The project also aimed to describe how treatment of source-separated toilet fractions affects the levels of pharmaceutical residues in the final product. A review of literature was made, focusing on studies and research related to pharmaceutical residues in the different fractions. No analyzes have been carried out within this project. Data on the content of pharmaceutical residues in untreated and treated source-separated toilet fractions was collected from previous studies and summarized. The basis in the different studies varies a lot, which makes it difficult to compare the results of the content and reduction of pharmaceutical residues in the different source-separated toilet fractions. Most of the studies that was found treated pharmaceuticals residues in urine. Most of the treatment methods for urine are performed in lab scale while studies on blackwater are made on plants that are in operation today. For fecal sludge, only one study that treats pharmaceuticals residues has been found. Different treatment methods work differently on different types of pharmaceutical residues. For urine, there are studies with many different treatment techniques. Of those considered in this study, only ozone and UV-light have a broad effect and reduces most of the pharmaceutical residues that have been analyzed. Three treatment methods have been studied for blackwater. None of the methods reduced all pharmaceutical residues, but treatment with UASB reactor provided a good reduction as most pharmaceutical residues analyzed were reduced to about 60 %. For fecal sludge, most pharmaceutical residues were not affected by either mesophilic or thermophilic digestion. Most studies on pharmaceutical residues in the environment focus on aquatic systems and the information on how the pharmaceutical residues behave in the soil is limited - both in terms of degradation and content in growing crops. More research is needed in these areas. Pharmaceutical residues in source-separated toilet fractions are a complex area with several gaps of knowledge and more research is needed. Hopefully, this rapport contributes to an overview of some data and treatment processes and brings more knowledge into the area that simplifies decisions and prioritization of future research

    AmmoniakavgÄng frÄn flytgödsellager : orötad och rötadnötflygödsel, med och utan surgörning

    No full text
    The study concerns acidification at the beginning of storage to reduce ammonia emissions during storage. The aim of the study was to evaluate the reduction of ammonia emissions by the acidification of cattle slurry, digested and non-digested, in storage under summer conditions. Cattle slurry (CS) and digested cattle slurry (DCS) were taken from a dairy farm with a digester plant. The sulphuric acid required for acidification to pH 5.5 was determined by titration before the pilot-scale experiment began. In the pilot-scale experiment, each slurry type was divided into two containers. One batch was acidified to pH<5.5 by adding sulphuric acid (96%) slowly with gentle mixing. The other batch was not acidified. During acidification, the pH was measured frequently and the total amounts of acid added were noted. Temperatures were measured during the four-month storage period with loggers at 0.1 m from the bottom and 0.1 m from the surface of each container. Data were continuously recorded hourly. Ammonia emissions were measured using a micrometeorological mass balance method with passive flux samplers. There were five measuring periods during the warm storage period from May to August. The length of the measuring periods ranged from 3 to 14 days, with the shortest period at the start of storage. On a pilot scale, the acid consumption for reaching pH< 5.5 was 1.1 L/m3 for CS and 6.2 L/m3 for DCS. The change in pH after acidification was rather limited and the pH stayed <6 throughout the four-month storage period for both CS and DCS. On a laboratory scale, more acid was needed to reach pH 5.5, and the pH increased more, with less buffering, than on a pilot scale. The reasons for this could be higher temperatures, frequent mixing, small volumes, and the use of diluted acid on a laboratory scale compared with on a pilot scale. On a laboratory scale, it was possible to show differences in acid demand between slurry types, but the amounts of acid needed seem to be different (higher) compared with pilot scale. The estimated cumulative NH3-N emissions corresponded to about 19% of total-N for CS and about 26% of total-N for DCS. The estimated cumulative NH3-N emissions were about the same as a percentage of TAN for CS and for DCS (57.8 and 53.9% respectively). Emissions from the acidified batches of slurry were overall negligibly low. The addition of acid decreased ammonia emissions very effectively, for both CS and DCS.Denna studie handlar om hur surgörning av flytgödsel vid start av lagringen kan minska ammoniakavgÄngen under lagringsperioden maj till augusti. MÄlet var att bestÀmma minskningen av ammoniakavgÄngen genom att surgöra nötflytgödsel, bÄde orötad och rötad och se effekten jÀmfört med gödsel utan syratillsats. Flytgödsel (CS) och rötad nötflytgödsel (DCS) hÀmtades frÄn en mjölkkogÄrd med en biogasanlÀggning. För att fÄ ett riktvÀrde för den syramÀngd som skulle ÄtgÄ för att sÀnka pH hos respektive gödseltyp till 5,5, utfördes titreringar i laboratorium innan uppstart av lagringsförsöket i pilotskala. Lagrings­anlÀggningen bestod av fyra behÄllare å 3 m3. Vid fyllningen av lagren, delades varje gödselslag upp mellan tvÄ behÄllare, varav det i en av behÄllarna tillsattes svavelsyra (96 %-ig) samtidigt som gödseln rördes om försiktigt med en eldriven propeller. Den andra behÄllaren rördes om ocksÄ men utan tillsats av syra. Under syratillsÀttningen mÀttes pH vid upprepade tillfÀllen och totala mÀngden syra noterades. Gödseln lagrades under fyra mÄnader frÄn maj till augusti samtidigt som gödseltemperaturen registerades pÄ tvÄ nivÄer i varje behÄllare, vid gödsel­ytan och nÀra botten, och temperaturvÀrdena registrerades varje timme. Under lagringen mÀttes ammoniakavgÄngen med en mikrometeorologisk massbalansmetod med passiva fluxprovtagare. Fluxprovtagarna var monterade pÄ master runt varje behÄllare under exponeringen. Totalt var det fem mÀt­perioder, som varade 3 till 14 dagar, med den kortaste perioden direkt efter fyllningen i maj. För att sÀnka pH till 5,5 Ätgick 1,1 liter per m3 för CS och 6,2 liter  per m3 för DCS. Under lagringen steg pH hos de surgjorda gödselslagen obetydligt och lÄg i slutet av lagringen pÄ pH mindre Àn 6 hos bÄda gödselslagen. Vid titreringen i laboratorium före start av lagringsförsöket behövdes det betydligt mer syra för att nÄ pH 5,5 Àn i pilotskalan. Orsaker till det kan vara att i laboratoriet var temperaturen högre, gödselvolymerna smÄ, gödseln blandades om ofta, samt att vid titreringen anvÀndes utspÀdd syra. Men Àven i laboratorieskalan var det stora skillnader mellan CS och DCS i syraförbrukning, sÄ titrering kan anvÀndas som en grov uppskattning och för att se skillnader mellan olika gödselslags syrabehov. DÀremot kan det vara svÄrt att förutse behovet av mer exakta syramÀngder i större skala. Totalt uppskattades den kumulativa ammoniakavgÄngen i kvÀvemÀngd uppgÄ till ca 19 % av totala kvÀveinnehÄllet hos nötflytgödsel (CS) och 26 % av kvÀve­innehÄllet i den rötade gödseln (DCS) nÀr ingen syra hade tillsatts.  Motsvarande siffror i procent av innehÄllet av det lÀttlösliga ammoniumkvÀvet var 57,8 % för CS och 53,9 % för DCS. AmmoniakavgÄngen frÄn den surgjorda CS och DCS gödseln var mycket liten och i stort negligerbar. Det betyder att tillsats av syra minskade ammonia-kavgÄngen mycket effektivt, bÄde för CS och DCS

    Surgörning av flytgödsel : Strukturanalyser av betong efter exponering i surgjord och icke surgjord flytgödsel

    No full text
    Samples of three different concrete qualities were prepared and hardened, before exposure in cattle slurry without sulphuric acid (A) and with sulphuric acid added until pH<5.5 (B). The samples were exposed for two years in containers with about 45 L slurry. The boxes with slurry and concrete samples were placed in a ventilated room at 20 °C. The slurry and air temperatures were recorded continuously with temperature loggers, data being recorded every third hour. The slurry level in the boxes and the slurry pH were checked regularly during the experiment. Slurry or acid was added, if necessary, to maintain the level and pH<5.5. Before pH measurements, the slurry was stirred gently in both boxes. To restrict evaporation, the containers had non-airtight plastic covers between measurements. Half-way through exposure, the old slurry was replaced with fresh slurry (acidified and non-acidified treatments) to mimic conditions in farm storage where fresh slurry is added continuously during storage. After two years’ storage, the experiment was finalised. The concrete samples were taken out of the slurry, washed gently with water and put into labelled plastic bags. The samples were delivered to RISE CBI’s concrete laboratory, where the structural analyses were performed. These used petrographic microscopy techniques to examine the effects of exposure to two potentially aggressive environments, non-acidified and acidified cattle slurry, on concrete with three different mixes. The studied surfaces in the concrete samples were oriented vertically in the plastic containers. Polished sections were evaluated with a stereo microscope, and thin sections were evaluated using a polarising microscope and sources for visible and UV light. The results of the study show that the acidified slurry is more chemically aggressive to the cement paste in all the concrete mixes analysed. This can be explained by the solution’s lower pH. The extent of the chemical attack correlates with the initial quality of the concrete mix (water-powder ratio and type of binder). The deepest chemical attacks were observed in samples A1 and B1 consisting of “regular” concrete mix with w/c 0.59. The “long lasting quality” (LLC) concrete with a binder specially developed for low-pH environments shows markedly better resistance to chemical attack. The effects of the chemical attack on concrete after two years’ exposure can be classified as weak, consisting mainly of an increase in the capillary porosity of the cement paste in the outer layer of the concrete. The increase in porosity is considered to be due to the partial leaching of calcium hydroxide.Surgörning av flytgödsel anvĂ€nds som en metod för att minska ammoniak­avgĂ„ngen frĂ„n stallgödsel vid hanteringen. För att minimera emissionerna under lagringen, efterstrĂ€vas ett pH-vĂ€rde av 5,5 hos gödseln. Svavelsyra Ă€r den vanligaste syran eftersom svavelsyran Ă€r stark och prisvĂ€rd. En pH-sĂ€nkning hos gödseln kan dock innebĂ€ra frĂ€tskador pĂ„ betongen i lager, som kan betyda kortare livslĂ€ngd om inte betongkvaliteten anpassas till gödselns pH. Syftet med denna studie var att se hur surgjord gödsel (B) pĂ„verkar betongytan hos olika betongkvaliteter jĂ€mfört med icke-surgjord nötflytgödsel (A). I studien ingick betongprover av tre olika kvaliteter, som motsvarade kvaliteten hos 1) bottenplattan hos flytgödsellager, 2) prefabricerade vĂ€ggelement till flytgödsellager samt 3) en betongkvalitĂ© kallad ”Long Lasting Concrete”, som utvecklats av Abetong AB för lagring av material med lĂ„gt pH, t.ex. ensilage. Betongprover (0,1 m x 0,1 m x 0,1 m) tillverkades av Abetong AB och exponerades under tvĂ„ Ă„r i nötflytgödsel utan syra (A) respektive surgjord nötflytgödsel (B). BehĂ„llarna med respektive gödseltyp placerades i rum med konstant temperatur ca 20°C. Under lagringen mĂ€ttes regelbundet pH och vid behov tillsattes mer gödsel samt syra för att hĂ„lla pH-vĂ€rdet under 5,5. HalvvĂ€gs genom studien byttes gödseln ut mot fĂ€rsk gödsel för att efterlikna verkliga lager och efter tvĂ„ Ă„r avslutades studien. Betongproverna togs ut ur gödselbehĂ„llarna, duschades försiktigt, paketerades och fördes till RISE CBI:s betonglaboratorium.   I laboratoriet utfördes strukturanalyser av betongen, dĂ€r den studerade ytan hos betongen hade varit vertikalt orienterad i gödselbehĂ„llaren. För att undersöka gödseltypernas effekt pĂ„ de olika betongblandningarna anvĂ€ndes betongpetrografiska analysmetoder. Polerade betongsnitt och tunnslip tillverkade av betongproverna utvĂ€rderades dels med hjĂ€lp av stereomikroskop, dels med polarisationsmikroskop och ljuskĂ€llor för synligt och ultraviolett ljus. Resultaten frĂ„n studierna visade att den surgörande gödseln var mer kemiskt aggressiv mot cementen i alla tre betongblandningarna. Det förklaras med det lĂ€gre pH-vĂ€rdet hos den surgjorda gödseln. Graden av kemiska pĂ„verkan hade samband med kvaliteten hos betongen, dvs. förhĂ„llandet vatten:cement och typ av bindemedel i betongen. Största kemiska pĂ„verkan uppmĂ€ttes i betongkvalitĂ© 1 som bestĂ„r av ”ordinĂ€r” betong med vattencementtal 0,59 (prover A1 och B1), motsvarande den som anvĂ€nds för bottenplattan i flytgödsellager. BetongkvalitĂ© 3, utvecklad för material med lĂ„gt pH (LLC), visade betydligt högre motstĂ„ndskraft mot kemisk pĂ„verkan. Den kemiska pĂ„verkan pĂ„ betongen var totalt sett svag efter tvĂ„ Ă„rs exponering och bestod frĂ€mst av en ökning av den kapillĂ€ra porositeten hos bindemedlet i betongens yttre skikt. Den ökade porositeten bedöms bero pĂ„ att en del av cementpastans kalciumhydroxid har brutits ner och lakats ur betongen. Vanligtvis Ă€r livslĂ€ngden hos ett gödsellager minst 20 Ă„r, sĂ„ det finns anledning att vara observant över tid pĂ„ hur betongen pĂ„verkas eller att som förebyggande Ă„tgĂ€rd anvĂ€nda en betong av högre kvalitet

    Surgörning av flytgödsel : Strukturanalyser av betong efter exponering i surgjord och icke surgjord flytgödsel

    No full text
    Samples of three different concrete qualities were prepared and hardened, before exposure in cattle slurry without sulphuric acid (A) and with sulphuric acid added until pH<5.5 (B). The samples were exposed for two years in containers with about 45 L slurry. The boxes with slurry and concrete samples were placed in a ventilated room at 20 °C. The slurry and air temperatures were recorded continuously with temperature loggers, data being recorded every third hour. The slurry level in the boxes and the slurry pH were checked regularly during the experiment. Slurry or acid was added, if necessary, to maintain the level and pH<5.5. Before pH measurements, the slurry was stirred gently in both boxes. To restrict evaporation, the containers had non-airtight plastic covers between measurements. Half-way through exposure, the old slurry was replaced with fresh slurry (acidified and non-acidified treatments) to mimic conditions in farm storage where fresh slurry is added continuously during storage. After two years’ storage, the experiment was finalised. The concrete samples were taken out of the slurry, washed gently with water and put into labelled plastic bags. The samples were delivered to RISE CBI’s concrete laboratory, where the structural analyses were performed. These used petrographic microscopy techniques to examine the effects of exposure to two potentially aggressive environments, non-acidified and acidified cattle slurry, on concrete with three different mixes. The studied surfaces in the concrete samples were oriented vertically in the plastic containers. Polished sections were evaluated with a stereo microscope, and thin sections were evaluated using a polarising microscope and sources for visible and UV light. The results of the study show that the acidified slurry is more chemically aggressive to the cement paste in all the concrete mixes analysed. This can be explained by the solution’s lower pH. The extent of the chemical attack correlates with the initial quality of the concrete mix (water-powder ratio and type of binder). The deepest chemical attacks were observed in samples A1 and B1 consisting of “regular” concrete mix with w/c 0.59. The “long lasting quality” (LLC) concrete with a binder specially developed for low-pH environments shows markedly better resistance to chemical attack. The effects of the chemical attack on concrete after two years’ exposure can be classified as weak, consisting mainly of an increase in the capillary porosity of the cement paste in the outer layer of the concrete. The increase in porosity is considered to be due to the partial leaching of calcium hydroxide.Surgörning av flytgödsel anvĂ€nds som en metod för att minska ammoniak­avgĂ„ngen frĂ„n stallgödsel vid hanteringen. För att minimera emissionerna under lagringen, efterstrĂ€vas ett pH-vĂ€rde av 5,5 hos gödseln. Svavelsyra Ă€r den vanligaste syran eftersom svavelsyran Ă€r stark och prisvĂ€rd. En pH-sĂ€nkning hos gödseln kan dock innebĂ€ra frĂ€tskador pĂ„ betongen i lager, som kan betyda kortare livslĂ€ngd om inte betongkvaliteten anpassas till gödselns pH. Syftet med denna studie var att se hur surgjord gödsel (B) pĂ„verkar betongytan hos olika betongkvaliteter jĂ€mfört med icke-surgjord nötflytgödsel (A). I studien ingick betongprover av tre olika kvaliteter, som motsvarade kvaliteten hos 1) bottenplattan hos flytgödsellager, 2) prefabricerade vĂ€ggelement till flytgödsellager samt 3) en betongkvalitĂ© kallad ”Long Lasting Concrete”, som utvecklats av Abetong AB för lagring av material med lĂ„gt pH, t.ex. ensilage. Betongprover (0,1 m x 0,1 m x 0,1 m) tillverkades av Abetong AB och exponerades under tvĂ„ Ă„r i nötflytgödsel utan syra (A) respektive surgjord nötflytgödsel (B). BehĂ„llarna med respektive gödseltyp placerades i rum med konstant temperatur ca 20°C. Under lagringen mĂ€ttes regelbundet pH och vid behov tillsattes mer gödsel samt syra för att hĂ„lla pH-vĂ€rdet under 5,5. HalvvĂ€gs genom studien byttes gödseln ut mot fĂ€rsk gödsel för att efterlikna verkliga lager och efter tvĂ„ Ă„r avslutades studien. Betongproverna togs ut ur gödselbehĂ„llarna, duschades försiktigt, paketerades och fördes till RISE CBI:s betonglaboratorium.   I laboratoriet utfördes strukturanalyser av betongen, dĂ€r den studerade ytan hos betongen hade varit vertikalt orienterad i gödselbehĂ„llaren. För att undersöka gödseltypernas effekt pĂ„ de olika betongblandningarna anvĂ€ndes betongpetrografiska analysmetoder. Polerade betongsnitt och tunnslip tillverkade av betongproverna utvĂ€rderades dels med hjĂ€lp av stereomikroskop, dels med polarisationsmikroskop och ljuskĂ€llor för synligt och ultraviolett ljus. Resultaten frĂ„n studierna visade att den surgörande gödseln var mer kemiskt aggressiv mot cementen i alla tre betongblandningarna. Det förklaras med det lĂ€gre pH-vĂ€rdet hos den surgjorda gödseln. Graden av kemiska pĂ„verkan hade samband med kvaliteten hos betongen, dvs. förhĂ„llandet vatten:cement och typ av bindemedel i betongen. Största kemiska pĂ„verkan uppmĂ€ttes i betongkvalitĂ© 1 som bestĂ„r av ”ordinĂ€r” betong med vattencementtal 0,59 (prover A1 och B1), motsvarande den som anvĂ€nds för bottenplattan i flytgödsellager. BetongkvalitĂ© 3, utvecklad för material med lĂ„gt pH (LLC), visade betydligt högre motstĂ„ndskraft mot kemisk pĂ„verkan. Den kemiska pĂ„verkan pĂ„ betongen var totalt sett svag efter tvĂ„ Ă„rs exponering och bestod frĂ€mst av en ökning av den kapillĂ€ra porositeten hos bindemedlet i betongens yttre skikt. Den ökade porositeten bedöms bero pĂ„ att en del av cementpastans kalciumhydroxid har brutits ner och lakats ur betongen. Vanligtvis Ă€r livslĂ€ngden hos ett gödsellager minst 20 Ă„r, sĂ„ det finns anledning att vara observant över tid pĂ„ hur betongen pĂ„verkas eller att som förebyggande Ă„tgĂ€rd anvĂ€nda en betong av högre kvalitet

    Glyphosate and aminomethylphosphonic acid degradation in biomixtures based on alfalfa straw, wheat stubble and river waste

    No full text
    The aim of the work was to evaluate novel biomixtures for their use on biopurification systems (BPS) in Argentina also called biobeds. Glyphosate and aminomethylphosphonic acid (AMPA) degradation was evaluated on biomixtures containing local materials: alfalfa straw (As), wheat stubble (Ws), river waste (Rw) and soil. Glyphosate, AMPA concentrations and biological activity were followed with time. Soil was used as control. Glyphosate initial concentration was 1000 mg kg−1. Glyphosate disappeared almost completely after 63 days in all tested biomixtures. For Ws, WsRw and AsRw glyphosate degradation was around 99% and for As 85%. The biomixture Ws showed the highest glyphosate degradation rate. In all cases AMPA was formed and degraded to concentrations between 60 and 100 mg kg−1. In the control with only soil, glyphosate was degraded 53% and AMPA concentration at the end of the test was 438 mg kg−1. We conclude that alfalfa straw, wheat stubble and river waste are local materials that can be used in the preparation of biomixtures since they showed higher glyphosate degradation capacity and less AMPA accumulation compared to the soil alone. Also, the presence of river waste did enhance the water retention capacity.Fil: Lescano, Maia Raquel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica. Universidad Nacional del Litoral. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica; ArgentinaFil: Pizzul, Leticia. Research Institutes Of Sweden; SueciaFil: Castillo, MarĂ­a del Pilar. Research Institutes Of Sweden; SueciaFil: Zalazar, Cristina Susana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica. Universidad Nacional del Litoral. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica; Argentin
    corecore