25 research outputs found

    Trojan Horse Investigation for AGB Stellar Nucleosynthesis

    Get PDF
    Asymptotic Giant Branch (AGB) stars are among the most important astrophysical sites influencing the nucleosynthesis and the chemical abundances in the Universe. From a pure nuclear point of view, several processes take part during this peculiar stage of stellar evolution thus requiring detailed experimental cross section measurements. Here, we report on the most recent results achieved via the application of the Trojan Horse Method (THM) and Asymptotic Normalization Coefficient (ANC) indirect techniques, discussing the details of the experimental procedure and the deduced reaction rates. In addition, we report also on the on going studies of interest for AGB nucleosynthesis

    Trojan Horse Method experiments with radioactive ion beams

    Get PDF
    The Trojan Horse Method (THM) is an indirect method that allows to get information about a two body reaction cross-section even at very low energy, avoiding the suppression effects due to the presence of the Coulomb barrier. The method requires a very accurate measurement of a three body reaction in order to reconstruct the whole kinematics and discriminate among different reaction mechanisms that can populate the same final state. These requirements hardly match with the typical low intensity and large divergence of radioactive ion beams (RIBs), and experimental improvements are mandatory for the applicability of the method. The first reaction induced by a radio activeion beam studied by applying the THM was the 18F(p,α)15O. Two experiments were performed in two different laboratories and using different experimental set-ups. The two experiments will be discussed and some results will be presented

    The 10B(p,α)7Be S(E)-factor from 5 keV to 1.5 MeV using the Trojan Horse Method

    Get PDF
    The 10 B(p, α ) 7 Be reaction is the main responsible for the 10 B destruction in stellar interior [1]. In such environments this p-capture process occurs at a Gamow energy of 10 keV and takes places mainly through a resonant state (Ex = 8.701 MeV) of the compound 11 C nucleus. Thus a resonance right in the region of the Gamow peak is expected to significantly influence the behavior of the astrophysical S(E)-factor. The 10 B(p, α ) 7 Be reaction was studied via the Trojan Horse Method (THM) applied to the 2 H( 10 B, α 7 Be)n in order to extract the astrophysical S(E)-factor in a wide energy range from 5 keV to 1.5 MeV

    The Trojan Horse Method: A Nuclear Physics Tool for Astrophysics

    No full text
    The Trojan Horse Method (THM) represents an indirect path to determine the bare nucleus astrophysical S-factor for reactions among charged particles at astrophysical energies. This is achieved by measuring the quasi-free cross section of a suitable three-body process. The method is also suited to study neutron-induced reactions, especially in the case of radioactive ion beams. A comprehensive review of the theoretical as well as experimental features behind the THM is presented here. An overview is given of some recent applications to demonstrate the method's practical use for reactions that have a great impact on selected astrophysical scenarios

    Influence of crystal structures on electron screening

    No full text
    For nucleosynthesis calculations, precise reaction rates should be known at energies within the Gamow window. At these energies, electron screening cannot be neglected. Despite the significance of the effect, a huge disagreement between experimental data and theoretical predictions is still not understood. In order to address to this problem, we investigated the dependence of the electron screening potential on the target host lattice structure by measuring the rate of the 2H(19F,p)20F reaction in zirconium, titanium and palladium targets containing deuterium
    corecore