31 research outputs found

    Kinetics of Formation of Butyric and Pyroglutamic Acid during the Shelf Life of Probiotic, Prebiotic and Synbiotic Yoghurt

    Get PDF
    Butyric acid (C4) and pyroglutamic acid (pGlu) exert significant beneficial effects on human health. In this study, the influence of probiotics (Lactobacillus acidophilus and Bifidobacteria) and/or prebiotics (1 and 3% inulin and fructo-oligosaccharides) on the content of C4 and pGlu in yoghurt during the shelf-life period was evaluated. The contents of C4 and pGlu were determined in probiotic, prebiotic and synbiotic yoghurts during 30 days of storage at 4 ◩C by solid-phase microextraction coupled with gas chromatography/mass spectrometry and HPLC analysis. Traditional yoghurt and uninoculated milk were used as control. Prebiotic yoghurt contained more C4 (2.2–2.4 mg/kg) than the uninoculated milk, and no increase was detected with respect to traditional yoghurt. However, probiotic yoghurt showed 10% more C4 than traditional yoghurt. Adding fibre to probiotics (synbiotic yoghurt) the C4 content increased by 30%. Regarding pGlu, probiotic yoghurt presented the highest content of approximately 130 mg/100 g. Fibre did not affect pGlu content. Finally, C4 and pGlu contents generally increased up to 20 days of storage and then decreased up to 30 days of storage. The results might be useful for the preparation of other functional foods rich in C4 and pGlu using lactic acid bacteria

    Bioactive compounds extracted by liquid and supercritical carbon dioxide from citrus peels

    Get PDF
    This work investigated the extraction of bioactive compounds from citrus peels, an agri-food waste. Carbon dioxide (CO2), an eco-friendly solvent, was used under liquid and supercritical conditions to perform the extractions from orange, tangerine and lemon peels. The possibility of using ethanol as a cosolvent at small percentages up to 20% was also studied. The extraction yield, total polyphenolic content, individual polyphenolic profile, antiradical activity and volatile organic compounds of the extracts were evaluated. The highest yields were obtained when 20% ethanol was used as a cosolvent in both liquid (at 20 MPa and 20 °C) and supercritical (at 30 MPa and 60 °C) CO2 extraction. In addition, the extracts obtained with liquid CO2 + 20% ethanol showed the highest content of naringin (35.26, 44.05 and 19.86 mg g-1 in orange, tangerine and lemon peel extracts, respectively) and terpenes, in particular limonene. This type of extract also showed the highest antiradical activity (31.78–59.51 ”molTE g-1) as measured by both ABTS·+ and DPPH·. These findings show that the extraction with a liquid CO2 and ethanol mixture could be a valid alternative to traditional solvent extraction using 80% less organic solvent and producing extracts with high antiradical capacity and rich in volatile organic compounds

    Basil (Ocimum basilicum L.) Leaves as a Source of Bioactive Compounds

    Get PDF
    Basil (Ocimum basilicum L.) is an annual spicy plant generally utilized as a flavouring agent for food. Basil leaves also have pharmaceutical properties due to the presence of polyphenols, phenolic acids, and flavonoids. In this work, carbon dioxide was employed to extract bioactive compounds from basil leaves. Extraction with supercritical CO2 (p = 30 MPa; T = 50 °C) for 2 h using 10% ethanol as a cosolvent was the most efficient method, with a yield similar to that of the control (100% ethanol) and was applied to two basil cultivars: “Italiano Classico” and “Genovese”. Antioxidant activity, phenolic acid content, and volatile organic compounds were determined in the extracts obtained by this method. In both cultivars, the supercritical CO2 extracts showed antiradical activity (ABTS●+ assay), caffeic acid (1.69–1.92 mg/g), linalool (35–27%), and bergamotene (11–14%) contents significantly higher than those of the control. The polyphenol content and antiradical activity measured by the three assays were higher in the “Genovese” cultivar than in the “Italiano Classico” cultivar, while the linalool content was higher (35.08%) in the “Italiano Classico” cultivar. Supercritical CO2 not only allowed us to obtain extracts rich in bioactive compounds in an environmentally friendly way but also reduced ethanol consumption

    Sweet basil functional quality as shaped by genotype and macronutrient concentration reciprocal action

    Get PDF
    Basil (Ocimum basilicum L.) is among the most widespread aromatic plants due to its versatility of use and its beneficial health properties. This aromatic plant thrives in hydroponics, which is a valid tool to improve the production and functional quality of crops, but nevertheless, it offers the possibility to de-seasonalize production. A floating raft system was adopted to test the production and quality potential during autumn season of three different genotypes of Genovese basil (Aroma 2, Eleonora and Italiano Classico) grown in three nutrient solutions with crescent electrical conductivity (EC: 1, 2 and 3 dS m−1). The aromatic and phenolic profiles were determined by GC/MS and HPLC analysis, respectively. The combination Aroma 2 and the EC 2 dS m−1 resulted in the highest production, both in terms of fresh weight and dry biomass. The 2 dS m−1 treatment determined the major phenolic content, 44%, compared to the other two EC. Italiano Classico showed a higher total polyphenolic content in addition to a different aromatic profile compared to the other cultivars, characterized by a higher percentage of Eucalyptol (+37%) and Eugenol (+107%) and a lower percentage of linalool (−44%). Correct management of the nutritional solution combined with adequate genetic material managed an improvement in the production and the obtainment of the desired aromatic and phenolic profiles

    Ontogenetic variation in the mineral, phytochemical and yield attributes of brassicaceous microgreens

    Get PDF
    Microgreens constitute novel gastronomic ingredients that combine visual, kinesthetic and bioactive qualities. The definition of the optimal developmental stage for harvesting microgreens remains fluid. Their superior phytochemical content against mature leaves underpins the current hypothesis of significant changes in compositional profile during the brief interval of ontogeny from the appearance of the first (S1) to the second true leaf (S2). Microgreens of four brassicaceous genotypes (Komatsuna, Mibuna, Mizuna and Pak Choi) grown under controlled conditions and harvested at S1 and S2 were appraised for fresh and dry yield traits. They were further analyzed for macro-and micromineral content using inductively coupled plasma optical emission spectrometry (ICP-OES), carotenoid content using high-performance liquid chromatography with a diode-array detector (HPLC-DAD), volatile organic compounds using solid-phase microextraction followed by gas chromatography-mass spectrometry (SPME-GC/MS), anthocyanins and polyphenols using liquid chromatography-high resolution-tandem mass spectrometry (LC-MS/MS) with Orbitrap technology and for chlorophyll and ascorbate concentrations, well as antioxidant capacity by spectrophotometry. Analysis of compositional profiles revealed genotype as the principal source of variation for all constituents. The response of mineral and phytochemical composition and of antioxidant capacity to the growth stage was limited and largely genotype-dependent. It is, therefore, questionable whether delaying harvest from S1 to S2 would significantly improve the bioactive value of microgreens while the cost-benefit analysis for this decision must be genotype-specific. Finally, the lower-yielding genotypes (Mizuna and Pak Choi) registered higher relative increase in fresh yield between S1 and S2, compared to the faster-growing and higher-yielding genotypes. Although the optimal harvest stage for specific genotypes must be determined considering the increase in yield against reduction in crop turnover, harvesting at S2 seems advisable for the lower-yielding genotypes

    The karyotype of Nothoscordum arenarium Herter (Gilliesioideae, Alliaceae): A populational and cytomolecular analysis

    Get PDF
    The genus Nothoscordum Kunth comprises approximately 20 species native to South America. Karyologically, the genus is remarkable for its large chromosomes and Robertsonian translocations. Variation in chromosome number has been recorded in a few polyploid species and it is unknown among diploids. This study presents the chromosome number and morphology of 53 individuals of seven populations of N. arenarium Herter (2n = 10). In addition, karyotype analyses after C-banding, staining with CMA and DAPI, and in situ hybridization with 5S and 45S rDNA probes were performed in six individuals from one population. All individuals exhibited 2n = 10 (6M + 4A), except for one tetraploid (2n = 20, 12M + 8A) and one triploid (2n = 15, 9M + 6A) plant. C-banding revealed the presence of CMA+ /DAPI - heterochromatin in the short arm and in the proximal region of the long arm of all acrocentric chromosomes. The 45S rDNA sites co-localized with the CMA + regions of the acrocentrics short arms, while the 5S rDNA probe only hybridized with the subterminal region of a pair of metacentric chromosomes. A change in the pattern of CMA bands and rDNA sites was observed in only one individual bearing a reciprocal translocation involving the long arm of a metacentric and the long arm of an acrocentric chromosome. These data suggest that, despite isolated cases of polyploidy and translocation, the karyotype of N. arenarium is very stable and the karyotypic instability described for other species may be associated with their polyploid condition

    Characterization of oleoresin extracted from tomato waste using carbon dioxide in sub and supercritical conditions

    No full text
    Introduction The food industry is characterized by a high number of wastes, nowadays they are used for agriculture or animal feed; in particular, in Italy, the tomato processing industry produces around 150 thousand tons of wastes each year (2-6% of the raw material). Tomato waste is characterized by high amounts of bioactive compounds such as carotenoids, polyphenols, vitamin E and essential fatty acids. In this work oil extracts from skins and tomato waste were produced using carbon dioxide in sub and supercritical conditions. Compositions of the oils were analyzed and compared to the composition of oil obtained by means of solvent. Method Skins and tomato waste were dried at 60°C and ground to get particle size of 1 mm. Skins and tomato waste were separately submitted to extraction by supercritical carbon dioxide, liquid carbon dioxide and hexanedichloromethane mixture solvent. Supercritical and liquid CO2 were carried out also using ethanol 10%. Carotenoids and tocopherols were determined in the extracts by means of high-performance liquid chromatography and spectrophotometry. Total polyphenols were determined via HPLC Diode Array/MS detector and using FolinCiocalteau method. The antioxidant capacity was measured via the DPPH method. Results / Discussion / Conclusion The best extraction parameters with subcritical CO2 were pressure 150 bar, temperature 20°C and flow 5 ml/min, while for the extraction with supercritical carbon dioxide parameters were 340 bar, 60°C and 10 ml / min. Extraction from waste with CO2 supercritical conditions with ethanol provided the highest yields in oleoresin (12.7- 12.9%), while the extracts obtained from skins with supercritical carbon dioxide without ethanol had the highest quantities of lycopene (205.7 mg/100g oil), ß-carotene (75.1 mg/100g oil), a and γ tocopherols (800.2 and 5756.0 mg/kg oil respectively). The highest quantity of polyphenols (93 mg GAE/g oil) was found in oil from skin by supercritical carbon dioxide with ethanol. The oleoresin extracts from skins and tomato waste using carbon dioxide in sub and supercritical conditions showed a great value in its antioxidant capacity (+780%) due to the presence of carotenoids, polyphenols, and tocopherols compared to the extracts obtained with solvent

    Extraction of pollutants from contaminated soil

    No full text
    Extn. of pollutants from soil by Soxhlet extn., ultrasonic extn., SPME, and the Naviglio extractor were compared; the extractor based on pressure changes was efficient and effective
    corecore