249 research outputs found

    G-CSF–stimulated Neutrophils Are a Prominent Source of Functional BLyS

    Get PDF
    B lymphocyte stimulator (BLyS) is a novel member of the TNF ligand superfamily that is important in B cell maturation and survival. We demonstrate that human neutrophils, after incubation with G-CSF or, less efficiently, IFNγ, express high levels of BLyS mRNA and release elevated amounts of biologically active BLyS. In contrast, surface expression of the membrane-bound BLyS was not detected in activated neutrophils. Indeed, in neutrophils, uniquely among other myeloid cells, soluble BLyS is processed intracellularly by a furin-type convertase. Worthy of note, the absolute capacity of G-CSF–stimulated neutrophils to release BLyS was similar to that of activated monocytes or dendritic cells, suggesting that neutrophils might represent an important source of BLyS. In this regard, we show that BLyS serum levels as well as neutrophil-associated BLyS are significantly enhanced after in vivo administration of G-CSF in patients. In addition, serum obtained from two of these patients induced a remarkable accumulation of neutrophil-associated BLyS in vitro. This effect was neutralized by anti–G-CSF antibodies, indicating that G-CSF, present in the serum, stimulated neutrophils to produce BLyS. Collectively, our findings suggest that neutrophils, through the production of BLyS, might play an unsuspected role in the regulation of B cell homeostasis

    Unbalanced IDO1/IDO2 endothelial expression and skewed keynurenine pathway in the pathogenesis of COVID-19 and post-COVID-19 pneumonia

    Get PDF
    Despite intense investigation, the pathogenesis of COVID-19 and the newly defined long COVID-19 syndrome are not fully understood. Increasing evidence has been provided of metabolic alterations characterizing this group of disorders, with particular relevance of an activated tryptophan/kynurenine pathway as described in this review. Recent histological studies have documented that, in COVID-19 patients, indoleamine 2,3-dioxygenase (IDO) enzymes are differentially expressed in the pulmonary blood vessels, i.e., IDO1 prevails in early/mild pneumonia and in lung tissues from patients suffering from long COVID-19, whereas IDO2 is predominant in severe/fatal cases. We hypothesize that IDO1 is necessary for a correct control of the vascular tone of pulmonary vessels, and its deficiency in COVID-19 might be related to the syndrome's evolution toward vascular dysfunction. The complexity of this scenario is discussed in light of possible therapeutic manipulations of the tryptophan/kynurenine pathway in COVID-19 and post-acute COVID-19 syndromes

    Macrophages may promote cancer growth via a GM-CSF/HB-EGF paracrine loop that is enhanced by CXCL12

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased numbers of tumour-associated macrophages correlate with shortened survival in some cancers. The molecular bases of this correlation are not thoroughly understood. Events triggered by CXCL12 may play a part, as CXCL12 drives the migration of both CXCR4-positive cancer cells and macrophages and may promote a molecular crosstalk between them.</p> <p>Results</p> <p>Samples of HER1-positive colon cancer metastases in liver, a tissue with high expression of CXCL12, were analysed by immunohistochemistry. In all of the patient biopsies, CD68-positive tumour-associated macrophages presented a mixed CXCL10 (M1)/CD163 (M2) pattern, expressed CXCR4, GM-CSF and HB-EGF, and some stained positive for CXCL12. Cancer cells stained positive for CXCR4, CXCL12, HER1, HER4 and GM-CSF. Regulatory interactions among these proteins were validated <it>via </it>experiments <it>in vitro </it>involving crosstalk between human mononuclear phagocytes and the cell lines DLD-1 (human colon adenocarcinoma) and HeLa (human cervical carcinoma), which express the above-mentioned ligand/receptor repertoire. CXCL12 induced mononuclear phagocytes to release HB-EGF, which activated HER1 and triggered anti-apoptotic and proliferative signals in cancer cells. The cancer cells then proliferated and released GM-CSF, which in turn activated mononuclear phagocytes and induced them to release more HB-EGF. Blockade of GM-CSF with neutralising antibodies or siRNA suppressed this loop.</p> <p>Conclusions</p> <p>CXCL12-driven stimulation of cancer cells and macrophages may elicit and reinforce a GM-CSF/HB-EGF paracrine loop, whereby macrophages contribute to cancer survival and expansion. The involvement of mixed M1/M2 GM-CSF-stimulated macrophages in a tumour-promoting loop may challenge the paradigm of tumour-favouring macrophages as polarized M2 mononuclear phagocytes.</p

    Pro-apoptotic activity of α-bisabolol in preclinical models of primary human acute leukemia cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously demonstrated that the plant-derived agent α-bisabolol enters cells <it>via </it>lipid rafts, binds to the pro-apoptotic Bcl-2 family protein BID, and may induce apoptosis. Here we studied the activity of α-bisabolol in acute leukemia cells.</p> <p>Methods</p> <p>We tested <it>ex vivo </it>blasts from 42 acute leukemias (14 Philadelphia-negative and 14 Philadelphia-positive B acute lymphoid leukemias, Ph<sup>-</sup>/Ph<sup>+</sup>B-ALL; 14 acute myeloid leukemias, AML) for their sensitivity to α-bisabolol in 24-hour dose-response assays. Concentrations and time were chosen based on CD34<sup>+</sup>, CD33<sup>+</sup>my and normal peripheral blood cell sensitivity to increasing α-bisabolol concentrations for up to 120 hours.</p> <p>Results</p> <p>A clustering analysis of the sensitivity over 24 hours identified three clusters. Cluster 1 (14 ± 5 ΌM α-bisabolol IC<sub>50</sub>) included mainly Ph<sup>-</sup>B-ALL cells. AML cells were split into cluster 2 and 3 (45 ± 7 and 65 ± 5 ΌM IC<sub>50</sub>). Ph<sup>+</sup>B-ALL cells were scattered, but mainly grouped into cluster 2. All leukemias, including 3 imatinib-resistant cases, were eventually responsive, but a subset of B-ALL cells was fairly sensitive to low α-bisabolol concentrations. α-bisabolol acted as a pro-apoptotic agent <it>via </it>a direct damage to mitochondrial integrity, which was responsible for the decrease in NADH-supported state 3 respiration and the disruption of the mitochondrial membrane potential.</p> <p>Conclusion</p> <p>Our study provides the first evidence that α-bisabolol is a pro-apoptotic agent for primary human acute leukemia cells.</p

    Novel protein-truncating variant in the APOB gene may protect from coronary artery disease and adverse cardiovascular events

    Get PDF
    Background and aims: Genetic testing is still rarely used for the diagnosis of dyslipidemia, even though gene variants determining plasma lipids levels are not uncommon.Methods: Starting from a a pilot-analysis of targeted Next Generation Sequencing (NGS) of 5 genes related to familial hypercholesterolemia (LDLR, APOB, PCSK9, HMGCR, APOE) within a cardiovascular cohort in subjects with extreme plasma concentrations of low-density lipoprotein (LDL) cholesterol, we discovered and characterized a novel point mutation in the APOB gene, which was associated with very low levels of apolipoprotein B (ApoB) and LDL cholesterol.Results: APOB c.6943 G &gt; T induces a premature stop codon at the level of exon 26 in the APOB gene and generates a protein which has the 51% of the mass of the wild type ApoB-10 0 (ApoB-51), with a trun-cation at the level of residue 2315. The premature stop codon occurs after the one needed for the synthesis of ApoB-4 8, allowing chylomicron production at intestinal level and thus avoiding potential nutritional impairments. The heterozygous carrier of APOB c.6943G &gt; T, despite a very high-risk profile encompassing all the traditional risk factors except for dyslipidemia, had normal coronary arteries by angiography and did not report any major adverse cardiovascular event during a 20-years follow-up, thereby obtaining advantage from the gene variant as regards protection against atherosclerosis, apparently without any metabolic retaliation.Conclusions: Our data support the use of targeted NGS in well-characterized clinical settings, as well as they indicate that.a partial block of ApoB production may be well tolerated and improve cardiovascular outcomes. (C) 2022 The Authors. Published by Elsevier B.V

    Hyperhomocysteinemia and Mortality after Coronary Artery Bypass Grafting

    Get PDF
    BACKGROUND: The independent prognostic impact, as well as the possible causal role, of hyperhomocysteinemia (HHcy) in coronary artery disease (CAD) is controversial. No previous study specifically has addressed the relationship between HHcy and mortality after coronary artery bypass grafting (CABG) surgery. The aim of this study is to evaluate the prognostic impact of HHcy after CABG surgery. METHODOLOGY AND PRINCIPAL FINDINGS: We prospectively followed 350 patients who underwent elective CABG between May 1996 and May 1999. At baseline, fasting total homocysteine (tHcy) levels were measured in all participants, and a post-methionine loading (PML) test was performed in 77.7% of them (n = 272). After a median follow-up of 58 months, 33 patients (9.4%) had died, 25 because of cardiovascular events. HHcy, defined by levels higher than the 90(th) percentile (25.2 ”mol/L) of the population's distribution, was significantly associated to total and cardiovascular mortality (P = 0.018 [log-rank test 5.57]; P = 0.002 [log-rank test 9.76], respectively). The PML test had no prognostic value. After multiple adjustment for other univariate predictors by Cox regression, including statin therapy (the most powerful predictor in uni-/multivariate analyses), high-sensitivity C Reactive Protein (hs-CRP) levels, and all known major genetic (MTHFR 677C→T polymorphism) and non-genetic (B-group vitamin status and renal function) tHcy determinants, HHcy remained an independent prognostic factor for mortality (HRs: 5.02, 95% CIs 1.88 to 13.42, P = 0.001). CONCLUSIONS: HHcy is an important prognostic marker after CABG, independent of modern drug therapy and biomarkers

    A proliferation-inducing ligand (APRIL) serum levels predict time to first treatment in patients affected by B-cell chronic lymphocytic leukemia

    Get PDF
    Purpose: A proliferation-inducing ligand (APRIL), a tumor necrosis factor superfamily member involved inB-lymphocytes differentiation and survival, plays a role in protecting B-Cell Chronic lymphocytic leukemia(B-CLL) cells from apoptosis. Having observed that APRIL serum (sAPRIL) levels were higher in B-CLLpatients with CLL at diagnosis as compared to healthy donors (14.61 \ub1 32.65 vs. 4.19 \ub1 3.42 ng \u2044 mL;P < 0.001), we tested the correlation existing in these patients between sAPRIL, clinical\u2013biological parametersand disease progression. Experimental design: sAPRIL levels were measured by ELISA in 130patients with B-CLL at diagnosis and in 25 healthy donors. Results: sAPRIL levels did not correlate withgender, age, clinical stage, blood cell counts, b2-microglobulin (b2M) levels, ZAP-70 and CD38 expression.Using median sAPRIL natural logarithm (ln) as cutoff, we distinguished two groups of patients (APRILLOWand APRILHIGH) who were comparable with regard to clinical\u2013biological parameters and overall survival, butdifferent with regard to time to the first treatment (TTFT; P = 0.035). According to univariate analysis, highlymphocyte count, high b2M, Binet stage B\u2013C, ZAP-70 expression and ln(sAPRIL) above median wereassociated with earlier TTFT. Advanced clinical stage, high b2M, ZAP-70 expression and ln(sAPRIL) abovemedian remained independently predictive of shorter TTFT at multivariate analysis. Moreover, sAPRILincreased its prognostic significance when patients were stratified according to independent favorable clinical\u2013biological characteristics (low b2M, stage A and lack of ZAP-70 expression). Conclusions: sAPRIL is anovel indicator of shorter TTFT in B-CLL and a predictor of progression especially in patients otherwiseconsidered at low risk according to validated prognostic factors

    The serological prevalence of SARS-CoV-2 infection in patients with chronic myeloid leukemia is similar to that in the general population

    Get PDF
    Patients with hematological malignancies are at an increased risk of SARS-CoV-2 disease (COVID-19) and adverse outcome. However, a low mortality rate has been reported in patients with chronic myeloid leukemia (CML). Preclinical evidence suggests that tyrosine kinase inhibitors (TKIs) may have a protective role against severe COVID-19

    Excellent outcomes of 2G-TKI therapy after imatinib failure in chronic phase CML patients

    Get PDF
    Second-generation tyrosine kinase inhibitors (2G-TKIs) dasatinib and nilotinib produced historical rates of about 50% complete cytogenetic response (CCyR) and about 40% major molecular response (MMR) in chronic myeloid leukaemia (CML) patients failing imatinib. Direct comparisons between dasatinib and nilotinib are lacking, and few studies addressed the dynamics of deep molecular response (DMR) in a "real-life" setting. We retrospectively analyzed 163 patients receiving dasatinib (n= 95) or nilotinib (n= 68) as second-line therapy after imatinib. The two cohorts were comparable for disease's characteristics, although there was a higher rate of dasatinib use in imatinib-resistant and of nilotinib in intolerant patients. Overall, 75% patients not in CCyR and 60% patients not in MMR at 2G-TKI start attained this response. DMR was achieved by 61 patients (37.4%), with estimated rate of stable DMR at 5 years of 24%. After a median follow-up of 48 months, 60% of patients persisted on their second-line treatment. Rates and kinetics of cytogenetic and molecular responses, progression-free and overall survival were similar for dasatinib and nilotinib. In a "real-life" setting, dasatinib and nilotinib resulted equally effective and safe after imatinib failure, determining high rates of CCyR and MMR, and a significant chance of stable DMR, a prerequisite for treatment discontinuation
    • 

    corecore