173 research outputs found

    Detection of heavy metals in water using graphene oxide quantum dots: an experimental and theoretical study

    Get PDF
    In this work, we investigate by ab initio calculations and optical experiments the sensitivity of graphene quantum dots in their use as devices to measure the presence, and concentration, of heavy metals in water. We demonstrate that the quenching or enhancement in the optical response (absorption, emission) depends on the metallic ion considered. In particular, two cases of opposite behaviour are considered in detail: Cd2+, where we observe an increase in the emission optical response for increasing concentration, and Pb2+ whose emission spectra, vice versa, are quenched along the concentration rise. The experimental trends reported comply nicely with the different hydration patterns suggested by the models that are also capable of reproducing the minor quenching/ enhancing effects observed in other ions. We envisage that quantum dots of graphene may be routinely used as cheap detectors to measure the degree of poisoning ions in water

    Two different acid oxidation syntheses to open C60 fullerene for heavy metal detection

    Get PDF
    Graphene oxide quantum dots (GOQDs) can be synthesized through a large variety of synthesis methods starting from different carbon allotropes such as nanotubes, graphite, C60 and exploiting various synthesis and reactions. These different approaches have great influence on the properties of the obtained materials, and, consequently, on the potential applications. In this work, Buckminster C60 fullerene has been used to prepare unfolded fullerene nanoparticles (UFNPs) via two distinct synthesis methods namely: Hummer and H2 SO4 + HNO3 solution. The different characteristics of the final materials and the different response in the presence of heavy metal ions have been investigated in view of sensing applications of water contamination

    Discriminating between different heavy metal ions with fullerene-derived nanoparticles

    Get PDF
    A novel type of graphene-like nanoparticle, synthesized by oxidation and unfolding of C-60 buckminsterfullerene fullerene, showed multiple and reproducible sensitivity to Cu2+, Pb2+, Cd2+, and As(III) through different degrees of fluorescence quenching or, in the case of Cd2+, through a remarkable fluorescence enhancement. Most importantly, only for Cu2+ and Pb2+, the fluorescence intensity variations came with distinct modifications of the optical absorption spectrum. Time-resolved fluorescence study confirmed that the common origin of these diverse behaviors lies in complexation of the metal ions by fullerene-derived carbon layers, even though further studies are required for a complete explanation of the involved processes. Nonetheless, the different response of fluorescence and optical absorbance towards distinct cationic species makes it possible to discriminate between the presence of Cu2+, Pb2+, Cd2+, and As(III), through two simple optical measurements. To this end, the use of a three-dimensional calibration plot is discussed. This property makes fullerene-derived nanoparticles a promising material in view of the implementation of a selective, colorimetric/fluorescent detection system

    Colorimetric detection of chromium(VI) ions in water using unfolded-fullerene carbon nanoparticles

    Get PDF
    Water pollution caused by hexavalent chromium (Cr(VI)) ions represents a serious hazard for human health due to the high systemic toxicity and carcinogenic nature of this metal species. The optical sensing of Cr(VI) through specifically engineered nanomaterials has recently emerged as a versatile strategy for the application to easy-to-use and cheap monitoring devices. In this study, a one-pot oxidative method was developed for the cage opening of C60 fullerene and the synthesis of stable suspensions of N-doped carbon dots in water–THF solutions (N-CDs-W-THF). The N-CDs-W-THF selectively showed variations of optical absorbance in the presence of Cr(VI) ions in water through the arising of a distinct absorption band peaking at 550 nm, i.e., in the transparency region of pristine material. Absorbance increased linearly, with the ion concentration in the range 1–100 µM, thus enabling visual and ratiometric determination with a limit of detection (LOD) of 300 nM. Selectivity and possible interference effects were tested over the 11 other most common heavy metal ions. The sensing process occurred without the need for any other reactant or treatment at neutral pH and within 1 min after the addition of chromium ions, both in deionized and in real water sam-ples

    Phospho-mTOR expression in human glioblastoma microglia-macrophage cells.

    Get PDF
    Abstract The glioblastoma (GBM) immune microenvironment is highly heterogeneous, and microglia may represent 30–70% of the entire tumor. However, the role of microglia and other specific immune populations is poorly characterized. Activation of mTOR signaling occurs in numerous human cancers and has roles in microglia-glioma cell interactions. We now show in human tumor specimens (42 patients), that 39% of tumor-associated microglial (TAM) cells express mTOR phosphorylated at Ser-2448; and similar mTOR activation is observed using a human microglia-glioma interaction paradigm. In addition, we confirm previous studies that microglia express urea and ARG1 (taken as M2 marker) in the presence of glioma cells, and this phenotype is down-regulated in the presence of a mTOR inhibitor. These results suggest that mTOR suppression in GBM patients might induce a reduction of the M2 phenotype expression in up to 40% of all TAMs. Since the M2 profile of microglial activation is believed to be associated with tumor progression, reductions in that phenotype may represent an additional anti-tumor mechanism of action of mTOR inhibitors, along with direct anti-proliferative activities

    Phospho-mTOR expression in human glioblastoma microglia-macrophage cells

    Get PDF
    The glioblastoma (GBM) immune microenvironment is highly heterogeneous, and microglia may represent 30–70% of the entire tumor. However, the role of microglia and other specific immune populations is poorly characterized. Activation of mTOR signaling occurs in numerous human cancers and has roles in microglia-glioma cell interactions. We now show in human tumor specimens (42 patients), that 39% of tumor-associated microglial (TAM) cells express mTOR phosphorylated at Ser-2448; and similar mTOR activation is observed using a human microglia-glioma interaction paradigm. In addition, we confirm previous studies that microglia express urea and ARG1 (taken as M2 marker) in the presence of glioma cells, and this phenotype is down-regulated in the presence of a mTOR inhibitor. These results suggest that mTOR suppression in GBM patients might induce a reduction of the M2 phenotype expression in up to 40% of all TAMs. Since the M2 profile of microglial activation is believed to be associated with tumor progression, reductions in that phenotype may represent an additional anti-tumor mechanism of action of mTOR inhibitors, along with direct anti-proliferative activities

    Effect of starch-based biomaterials on the in vitro proliferation and viability of osteoblast-like cells

    Get PDF
    The cytotoxicity of starch-based polymers was investigated using different methodologies. Poly-L-lactic acid (PLLA) was used as a control for comparison purposes. Extracts of four different starch-based blends (corn starch and ethylene vinyl alcohol (SEVA-C), corn starch and cellulose acetate (SCA), corn starch and polycaprolactone (SPCL) and starch and poly-lactic acid (SPLA70) were prepared in culture medium and their toxicity was analysed. Osteoblast-like cells (SaOs-2) were incubated with the extracts and cell viability was assessed using the MTT test and a lactate dehydrogenase (LDH) assay. In addition DNA and total protein were quantified in order to evaluate cell proliferation. Cells were also cultured in direct contact with the polymers for 3 and 7 days and observed in light and scanning electron microscopy (SEM). LDH and DNA quantification revealed to be the most sensitive tests to assess respectively cell viability and cell proliferation after incubation with starch-based materials and PLLA. SCA was the starch blend with higher cytotoxicity index although similar to PLLA polymer. Cell adhesion tests confirmed the worst performance of the blend of starch with cellulose acetate but also showed that SPCL does not perform as well as it could be expected. All the other materials were shown to present a comparable behaviour in terms of cell adhesion showing slight differences in morphology that seem to disappear for longer culture times. The results of this study suggest that not only the extract of the materials but also their three-dimensional form has to be biologically tested in order to analyse material-associated parameters that are not possible to consider within the degradation extract. In this study, the majority of the starch-based biomaterials presented very promising results in terms of cytotoxicity, comparable to the currently used biodegradable PLLA which might lead the biocompatibility evaluation of those novel biomaterials to other studies.Fundação para a Ciência e a Tecnologia (FCT

    Associations between diet and disease activity in ulcerative colitis patients using a novel method of data analysis

    Get PDF
    BACKGROUND: The relapsing nature and varying geographical prevalence of ulcerative colitis (UC) implicates environmental factors such as diet in its aetiology. METHODS: In order to determine which foods might be related to disease activity in UC a new method of dietary analysis was developed and applied. Eighty-one UC patients were recruited at all stages of the disease process. Following completion of a 7 d diet diary, clinical assessment including a sigmoidoscopic examination (scale 0 (normal mucosa) to 6 (very active disease)) was conducted. Food weights for each person were adjusted (divided) by the person's calorific intake for the week. Each food consumed was given a food sigmoidoscopy score (FSS) calculated by summing the products of the (adjusted) weight of food consumed and sigmoidoscopy score for each patient and occurrence of food and dividing by the total (adjusted) weight of the food consumed by all 81 patients. Thus, foods eaten in large quantities by patients with very active disease have high FSSs and vice versa. Foods consumed by <10 people or weighing <1 kg for the whole group were excluded, leaving 75 foods. RESULTS: High FSS foods were characterized by high levels of the anti-thiamin additive sulfite (Mann-Whitney, p < 0.001), i.e. bitter, white wine, burgers, soft drinks from concentrates, sausages, lager and red wine. Caffeine also has anti-thiamin properties and decaffeinated coffee was associated with a better clinical state than the caffeine containing version. Beneficial foods (average intake per week) included pork (210 g), breakfast cereals (200 g), lettuce (110 g), apples and pears (390 g), milk (1250 ml), melon (350 g), bananas (350 g), bacon (120 g), beef and beef products (500 g), tomatoes (240 g), soup (700 g), citrus fruits (300 g), fish (290 g), yogurt (410 g), cheese (110 g), potatoes (710 g) and legumes (120 g). CONCLUSIONS: The dietary analysis method described provides a new tool for establishing relationships between diet and disease and indicates a potentially therapeutic diet for UC
    • …
    corecore