302 research outputs found

    Effects of exenatide and liraglutide on heart rate, blood pressure and body weight : systematic review and meta-analysis

    Get PDF
    Objectives: To synthesise current evidence for the effects of exenatide and liraglutide on heart rate, blood pressure and body weight. Design: Meta-analysis of available data from randomised controlled trials comparing Glucagon-like peptide-1 (GLP-1) analogues with placebo, active antidiabetic drug therapy or lifestyle intervention. Participants: Patients with type 2 diabetes. Outcome measures: Weighted mean differences between trial arms for changes in heart rate, blood pressure and body weight, after a minimum of 12-week follow-up. Results: 32 trials were included. Overall, GLP-1 agonists increased the heart rate by 1.86 beats/min (bpm) (95% CI 0.85 to 2.87) versus placebo and 1.90 bpm (1.30 to 2.50) versus active control. This effect was more evident for liraglutide and exenatide long-acting release than for exenatide twice daily. GLP-1 agonists decreased systolic blood pressure by −1.79 mm Hg (−2.94 to −0.64) and −2.39 mm Hg (−3.35 to −1.42) compared to placebo and active control, respectively. Reduction in diastolic blood pressure failed to reach statistical significance (−0.54 mm Hg (−1.15 to 0.07) vs placebo and −0.50 mm Hg (−1.24 to 0.24) vs active control). Body weight decreased by −3.31 kg (−4.05 to −2.57) compared to active control, but by only −1.22 kg (−1.51 to −0.93) compared to placebo. Conclusions: GLP-1 analogues are associated with a small increase in heart rate and modest reductions in body weight and blood pressure. Mechanisms underlying the rise in heart rate require further investigation

    Non-reciprocal interactions spatially propagate fluctuations in a 2D Ising model

    Full text link
    Motivated by the anisotropic interactions between fish, we implement spatially anisotropic and therefore non-reciprocal interactions in the 2D Ising model. First, we show that the model with non-reciprocal interactions alters the system critical temperature away from that of the traditional 2D Ising model. Further, local perturbations to the magnetization in this out-of-equilibrium system manifest themselves as traveling waves of spin states along the lattice, also seen in a mean-field model of our system. The speed and directionality of these traveling waves are controllable by the orientation and magnitude of the non-reciprocal interaction kernel as well as the proximity of the system to the critical temperature.Comment: 4 figure

    Measuring supply chain complexity based on multi-criteria decision approach

    Get PDF
    This study identified twenty-two drivers that cause the complexity in supply chain. The level of such complexity is quantified by using hybrid AHP and GRA method. A case company is studied in order to demonstrate the applicability of the proposed method. The results from the case company were analyzed and it is seen that the level of supply chain complexity of the case company is 0.44, which is signifying that there is a considerable scope of improvement in terms of minimizing complexity in its supply chain. From the study outcomes, it is realized that the case company mainly needs substantial improvement on the issues of “government regulation,” “internal communication and information sharing,” and “company culture” in order to minimize the level of accompanied complexity in its supply chain.©2020 IEOM Society.fi=vertaisarvioitu|en=peerReviewed

    Novel Bacterial Diversity and Fragmented eDNA Identified in Hyperbiofilm-Forming Pseudomonas aeruginosa Rugose Small Colony Variant

    Get PDF
    Pseudomonas aeruginosa biofilms represent a major threat to health care. Rugose small colony variants (RSCV) of P. aeruginosa, isolated from chronic infections, display hyperbiofilm phenotype. RSCV biofilms are highly resistant to antibiotics and host defenses. This work shows that RSCV biofilm aggregates consist of two distinct bacterial subpopulations that are uniquely organized displaying contrasting physiological characteristics. Compared with that of PAO1, the extracellular polymeric substance of RSCV PAO1ΔwspF biofilms presented unique ultrastructural characteristics. Unlike PAO1, PAO1ΔwspF released fragmented extracellular DNA (eDNA) from live cells. Fragmented eDNA, thus released, was responsible for resistance of PAO1ΔwspF biofilm to disruption by DNaseI. When added to PAO1, such fragmented eDNA enhanced biofilm formation. Disruption of PAO1ΔwspF biofilm was achieved by aurine tricarboxylic acid, an inhibitor of DNA-protein interaction. This work provides critical novel insights into the contrasting structural and functional characteristics of a hyperbiofilm-forming clinical bacterial variant relative to its own wild-type strain

    Impact of gut hormone FGF-19 on type-2 diabetes and mitochondrial recovery in a prospective study of obese diabetic women undergoing bariatric surgery

    Get PDF
    Background: The ileal-derived hormone, fibroblast growth factor 19 (FGF-19), may promote weight loss and facilitate type-2 diabetes mellitus remission in bariatric surgical patients. We investigated the effect of different bariatric procedures on circulating FGF-19 levels and the resulting impact on mitochondrial health in white adipose tissue (AT). Methods: Obese and type-2 diabetic women (n = 39, BMI > 35 kg/m2) undergoing either biliopancreatic diversion (BPD), laparoscopic greater curvature plication (LGCP), or laparoscopic adjustable gastric banding (LAGB) participated in this ethics approved study. Anthropometry, biochemical, clinical data, serum, and AT biopsies were collected before and 6 months after surgery. Mitochondrial gene expression in adipose biopsies and serum FGF-19 levels were then assessed. Results: All surgeries led to metabolic improvements with BPD producing the greatest benefits on weight loss (↓30%), HbA1c (↓28%), and cholesterol (↓25%) reduction, whilst LGCP resulted in similar HbA1c improvements (adjusted for BMI). Circulating FGF-19 increased in both BPD and LGCP (χ2(2) = 8.088; P = 0.018), whilst, in LAGB, FGF-19 serum levels decreased (P = 0.028). Interestingly, circulating FGF-19 was inversely correlated with mitochondrial number in AT across all surgeries (n = 39). In contrast to LGCP and LAGB, mitochondrial number in BPD patients corresponded directly with changes in 12 of 14 mitochondrial genes assayed (P < 0.01). Conclusions: Elevated serum FGF-19 levels post-surgery were associated with improved mitochondrial health in AT and overall diabetic remission. Changes in circulating FGF-19 levels were surgery-specific, with BPD producing the best metabolic outcomes among the study procedures (BPD > LGCP > LAGB), and highlighting mitochondria in AT as a potential target of FGF-19 during diabetes remission

    Failure of physiologic transformation of spiral arteries, endothelial and trophoblast cell activation, and acute atherosis in the basal plate of the placenta

    Get PDF
    BACKGROUND: Failure of physiologic transformation of spiral arteries has been reported in preeclampsia, fetal growth restriction, fetal death, and spontaneous preterm labor with intact or ruptured membranes. Spiral arteries with failure of physiologic transformation are prone to develop atherosclerotic-like lesions of atherosis. There are striking parallels between preeclampsia and atherosclerotic disease, and between lesions of atherosis and atherosclerosis. Endothelial activation, identified by intercellular adhesion molecule-1 expression, is present in atherosclerotic-like lesions of heart transplantation, and is considered a manifestation of rejection. Similarly, endothelial activation/dysfunction has been implicated in the pathophysiology of atherosclerosis and preeclampsia. Intercellular adhesion molecule-1-overexpressing-activated endothelial cells are more resistant to trophoblast displacement than nonactivated endothelium, and may contribute to shallow spiral artery trophoblastic invasion in obstetrical syndromes having failure of physiologic transformation. OBJECTIVE: We sought to determine whether failure of spiral artery physiologic transformation was associated with activation of interstitial extravillous trophoblasts and/or spiral artery endothelium and presence of acute atherosis in the placental basal plate. STUDY DESIGN: A cross-sectional study of 123 placentas (19-42 weeks' gestation) obtained from normal pregnancies (n = 22), preterm prelabor rupture of membranes (n = 26), preterm labor (n = 23), preeclampsia (n = 27), intrauterine fetal death (n = 15), and small for gestational age (n = 10) was performed. Failure of spiral artery physiologic transformation and presence of cell activation was determined using immunohistochemistry of placental basal plates containing a median of 4 (minimum: 1; maximum: 9) vessels per placenta. Endothelial/trophoblast cell activation was defined by the expression of intercellular adhesion molecule-1. Investigators examining microscopic sections were blinded to clinical diagnosis. Pairwise comparisons among placenta groups were performed with Fisher exact test and Wilcoxon rank sum test using a Bonferroni-adjusted level of significance (.025). RESULTS: We found that 87% (94/108) of placentas having spiral arteries with failure of physiologic transformation (actin-positive and cytokeratin-negative) in the basal plate, and 0% (0/15) of placentas having only spiral arteries with complete physiologic transformation (cytokeratin-positive and actin-negative), had arterial endothelial and/or interstitial extravillous trophoblasts reactive with the intercellular adhesion molecule-1 activation marker (P < .001). A significant correlation (R2 = 0.84) was found between expression of spiral artery endothelial and interstitial extravillous trophoblast intercellular adhesion molecule-1 (P < .001) in activated placentas. Lesions of atherosis were found in 31.9% (30/94) of placentas with complete and/or partial failure of physiologic transformation of spiral arteries that were intercellular adhesion molecule-1-positive, in none of the 14 placentas with failure of physiologic transformation that were intercellular adhesion molecule-1-negative, and in none of the 15 placentas with complete spiral artery physiologic transformation without failure (P = .001). All placentas (30/30, 100%) with atherosis were identified in placentas having concomitant spiral artery endothelial and interstitial extravillous trophoblast activation. CONCLUSION: Failure of spiral artery physiologic transformation in the placental basal plate is associated with interstitial extravillous trophoblast and arterial endothelial activation along with increased frequency of spiral artery atherosis. These findings may be used to improve the characterization of different disorders of the placental bed such as in refining the existing tools for the early prediction of risk for preterm, preeclamptic, and other abnormal pregnancies

    Disposable Patterned Electroceutical Dressing (PED-10) Is Safe for Treatment of Open Clinical Chronic Wounds

    Get PDF
    Objective: To evaluate if patterned electroceutical dressing (PED) is safe for human chronic wounds treatment as reported by wound care providers. Approach: This work reports a pilot feasibility study with the primary objective to determine physically observable effects of PED application on host tissue response from a safety evaluation point of view. For this pilot study, patients receiving a lower extremity amputation with at least one open wound on the part to be amputated were enrolled. Patients were identified through the Ohio State University Wexner Medical Center (OSUWMC) based on inclusion and exclusion criteria through prescreening through the Comprehensive Wound Center's (CWC) Limb Preservation Program and wound physicians and/or providers at OSUWMC. Wounds were treated with the PED before amputation surgery. Results: The intent of the study was to identify if PED was safe for clinical application based on visual observations of adverse or lack of adverse events on skin and wound tissue. The pilot testing performed on a small cohort (N = 8) of patients showed that with engineered voltage regulation of current flow to the open wound, the PED can be used with little to no visually observable adverse effects on chronic human skin wounds. Innovation: The PED was developed as a second-generation tunable electroceutical wound care dressing, which could potentially be used to treat wounds with deeper infections compared with current state of the art that treats wounds with treatment zone limited to the surface near topical application. Conclusion: Technology advances in design and fabrication of electroceutical dressings were leveraged to develop a tunable laboratory prototype that could be used as a disposable low-cost electroceutical wound care dressing on chronic wounds. Design revisions of PED-1 (1 kΩ ballast resistor) circumvented previously observed adverse effects on the skin in the vicinity of an open wound. PED-10 (including a 10 kΩ ballast resistor) was well tolerated in the small cohort of patients (N = 8) on whom it was tested, and the observations reported here warrant a larger study to determine the clinical impact on human wound healing and infection control
    corecore