19 research outputs found

    Macrophage Migration and Its Regulation by CSF-1

    Get PDF
    Macrophages are terminally differentiated cells of the mononuclear phagocytic lineage and develop under the stimulus of their primary growth and differentiation factor, CSF-1. Although they differentiate into heterogeneous populations, depending upon their tissue of residence, motility is an important aspect of their function. To facilitate their migration through tissues, macrophages express a unique range of adhesion and cytoskeletal proteins. Notably, macrophages do not form large, stable adhesions or actin stress fibers but rely on small, short lived point contacts, focal complexes and podosomes for traction. Thus, macrophages are built to respond rapidly to migratory stimuli. As well as triggering growth and differentiation, CSF-1 is also a chemokine that regulates macrophage migration via activation the CSF-1 receptor tyrosine kinase. CSF-1R autophosphorylation of several intracellular tyrosine residues leads to association and activation of many downstream signaling molecules. However, phosphorylation of just one residue, Y721, mediates association of PI3K with the receptor to activate the major motility signaling pathways in macrophages. Dissection of these pathways will identify drug targets for the inhibition of diseases in which macrophages contribute to adverse outcomes

    Mesothelial cells regulate immune responses in health and disease: Role for immunotherapy in malignant mesothelioma

    Get PDF
    Highlights: Mesothelial and immune cell interactions play a crucial role in tissue homeostasis in the serosal cavities such as the pleura. Mesothelin is viewed as an attractive target for solid tumors, including malignant mesothelioma. Checkpoint inhibitor therapy has shown variable efficacy against malignant mesothelioma. CAR T cell therapies are being evaluated for malignant mesothelioma. Treatment of malignant mesothelioma will require multimodality approaches with immunotherapy central to future therapeutic approaches. The mesothelium when first described was thought to function purely as a non-adhesive surface to facilitate intracoelomic movement of organs. However, the mesothelium is now recognized as a dynamic cellular membrane with many important functions that maintain serosal integrity and homeostasis. For example, mesothelial cells interact with and help regulate the body’s inflammatory and immune system following infection, injury, or malignancy. With recent advances in our understanding of checkpoint molecules and the advent of novel immunotherapy approaches, there has been an increase in the number of studies examining mesothelial and immune cell interaction, in particular the role of these interactions in malignant mesothelioma. This review will highlight some of the recent advances in our understanding of how mesothelial cells help regulate serosal immunity and how in a malignant environment, the immune system is hijacked to stimulate tumor growth. Ways to treat mesothelioma using immunotherapy approaches will also be discussed

    A three-dimensional co-culture system to investigate macrophage-dependent tumor cell invasion

    Get PDF
    Acknowledgments: This work was supported by funding from the Cancer Council of Western Australia. ARD is a holder of an Australian Postgraduate Award from the University of Western Australia. The authors acknowledge the facilities, and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, a facility funded by the University, State and Commonwealth Governments. We also thank Dr. Richard Stanley for the kind gift of CSF-1 and Gilead Sciences for providing GS-1101.Peer reviewedPublisher PD

    Regulation of lamellipodial persistence, adhesion turnover, and motility in macrophages by focal adhesion kinase

    Get PDF
    Macrophages are a key component of the innate immune system. In this study, we investigate how focal adhesion kinase (FAK) and the related kinase Pyk2 integrate adhesion signaling and growth factor receptor signaling to regulate diverse macrophage functions. Primary bone marrow macrophages isolated from mice in which FAK is conditionally deleted from cells of the myeloid lineage exhibited elevated protrusive activity, altered adhesion dynamics, impaired chemotaxis, elevated basal Rac1 activity, and a marked inability to form stable lamellipodia necessary for directional locomotion. The contribution of FAK to macrophage function in vitro was substantiated in vivo by the finding that recruitment of monocytes to sites of inflammation was impaired in the absence of FAK. Decreased Pyk2 expression in primary macrophages also resulted in a diminution of invasive capacity. However, the combined loss of FAK and Pyk2 had no greater effect than the loss of either molecule alone, indicating that both kinases function within the same pathway to promote invasion

    Rho family GTPases regulate mammary epithelium cell growth and metastasis through distinguishable pathways.

    Get PDF
    BACKGROUND: Relatively few genes have been shown to directly affect the metastatic phenotype of breast cancer epithelial cells in vivo. The Rho family of proteins, incluing the Rho, Rac and Cdc42 subfamilies, are related to the small GTP binding protein Ras and regulated diverse biological processes including gene transcription, cytoskeletal organization, cell proliferation and transformation. The effects of Cdc42, Rac and Rho on the actin cytoskeleton suggested a possible role for Rho proteins in cellular motility and metastasis; however, a formal analysis of the role of Rho proteins in breast cancer cellular growth and metastasis in vivo had not previously been performed. MATERIALS AND METHODS: We generated a panel of MTLn3 rat mammary adenocarcinoma cells that expressed similar levels of dominant inhibitory mutants of Cdc42-, Rac- and Rho-dependent signaling, to examine the contribution of these GTPases to cell spreading, guided chemotaxis, and metastasis in vivo. The ability of Rho proteins to regulate intravasation into the peripheral blood was determined by implanting MTLn3 cell stable dominant negative lines in nude mice and measuring the formation of breast cancer cell colonies grown from the peripheral blood. Serial sectioning of the lungs was performed to determine the presence of metastasis in mice in which mammary tumors expressing the dominant negative Rho family proteins had grown to a similar size. RESULTS: Cell spreading of MTLn3 cells was selectively abrogated by N17Rac1. N19RhoA and N17Cdc42 reduced the number of focal contacts (FCs) and disrupted the co-localization of vinculin with phosphotyrosine at FCs. While N17Rac1 and N17Cdc42 preferentially inhibited colony formation in soft agar, all three GTPases affected cell growth in vivo. To distinguish effects on tumorigenicity from intravasation into the bloodstream, implanted tumors were grown to the same size in nude mice. Each dominant inhibitory Rho protein reduced intravasation into the peripheral blood. Lung metastasis of MTLn3 cells was also abrogated by the dominant inhibitory Rho proteins, despite the presence of residual CFU. CONCLUSIONS: These studies demonstrate for the first time a critical role for the Rho GTPases involving independent signaling pathways to limit mammary tumor cellular growth and metastasis in vivo

    Phosphorylation of CSF-1R Y721 mediates its association with PI3K to regulate macrophage motility and enhancement of tumor cell invasion

    No full text
    Colony stimulating factor-1 (CSF-1) regulates macrophage morphology and motility, as well as mononuclear phagocytic cell proliferation and differentiation. The CSF-1 receptor (CSF-1R) transduces these pleiotropic signals through autophosphorylation of eight intracellular tyrosine residues. We have used a novel bone-marrow-derived macrophage cell line system to examine specific signaling pathways activated by tyrosine-phosphorylated CSF-1R in macrophages. Screening of macrophages expressing a single species of CSF-1R with individual tyrosine-to-phenylalanine residue mutations revealed striking morphological alterations upon mutation of Y721. M−/−.Y721F cells were apolar and ruffled poorly in response to CSF-1. Y721-P-mediated CSF-1R signaling regulated adhesion and actin polymerization to control macrophage spreading and motility. Moreover, the reduced motility of M−/− .Y721F macrophages was associated with their reduced capacity to enhance carcinoma cell invasion. Y721 phosphorylation mediated the direct association of the p85 subunit of phosphoinositide 3-kinase (PI3K) with the CSF-1R, but not that of phospholipase C (PLC) γ2, and induced polarized PtdIns(3,4,5)P3 production at the putative leading edge, implicating PI3K as a major regulator of CSF-1-induced macrophage motility. The Y721-P-motif-based motility signaling was at least partially independent of both Akt and increased Rac and Cdc42 activation but mediated the rapid and transient association of an unidentified ~170 kDa phosphorylated protein with either Rac-GTP or Cdc42-GTP. These studies identify CSF-1R-Y721-P–PI3K signaling as a major pathway in CSF-1-regulated macrophage motility and provide a starting point for the discovery of the immediate downstream signaling events

    The PCH Family Member MAYP/PSTPIP2 Directly Regulates F-Actin Bundling and Enhances Filopodia Formation and Motility in Macrophages

    No full text
    Macrophage actin-associated tyrosine phosphorylated protein (MAYP) belongs to the Pombe Cdc15 homology (PCH) family of proteins involved in the regulation of actin-based functions including cell adhesion and motility. In mouse macrophages, MAYP is tyrosine phosphorylated after activation of the colony-stimulating factor-1 receptor (CSF-1R), which also induces actin reorganization, membrane ruffling, cell spreading, polarization, and migration. Because MAYP associates with F-actin, we investigated the function of MAYP in regulating actin organization in macrophages. Overexpression of MAYP decreased CSF-1–induced membrane ruffling and increased filopodia formation, motility and CSF-1-mediated chemotaxis. The opposite phenotype was observed with reduced expression of MAYP, indicating that MAYP is a negative regulator of CSF-1–induced membrane ruffling and positively regulates formation of filopodia and directional migration. Overexpression of MAYP led to a reduction in total macrophage F-actin content but was associated with increased actin bundling. Consistent with this, purified MAYP bundled F-actin and regulated its turnover in vitro. In addition, MAYP colocalized with cortical and filopodial F-actin in vivo. Because filopodia are postulated to increase directional motility by acting as environmental sensors, the MAYP-stimulated increase in directional movement may be at least partly explained by enhancement of filopodia formation

    BCL-6 negatively regulates macrophage proliferation by suppressing autocrine IL-6 production

    No full text
    The transcription repressor BCL-6 is known to play critical roles in B-cell lymphomagenesis, germinal center formation, and balanced Th1/Th2 differentiation. In macrophages, although BCL-6 has also been shown to regulate the expression of several chemokine genes, its function in other aspects of macrophage biology has not been studied. In addition, the precise role of BCL-6 in cell proliferation is poorly understood in general. Here we report that BCL-6 ؊/؊ macrophages hyperproliferate due to an accelerated G 1 /S transition accompanied by increased cyclin D2 and c-myc and decreased expression of p27. Crucial to this enhanced proliferation is spontaneous interleukin 6 (IL-6) production and signal transducer and activator of transcription 3 (STAT3) activation in BCL-6 ؊/؊ macrophages. In colony-forming assays, BCL-6 ؊/؊ bone marrow progenitor cells form spontaneous macrophage colonies that can be inhibited by anti-IL-6 antibodies. Gene expression studies demonstrate that BCL-6 binds to several sequence motifs scattered in the IL-6 locus and can repress IL-6 transcription both in 293T cells and in macrophages. In conclusion, our results indicate that BCL-6 negatively regulates proliferation of the monocytic/ macrophage lineage by suppressing an autocrine IL-6/STAT3-mediated gene expression program. Our work also suggests that BCL-6 prevents abnormal Th2 differentiation by suppressing basal level IL-6 production in antigen-presenting cells (APC
    corecore