71 research outputs found
Study to assess the importance of errors introduced by applying NOAA 6 and NOAA 7 AVHRR data as an estimator of vegetative vigor: Feasibility study of data normalization
The use of NOAA AVHRR data to map and monitor vegetation types and conditions in near real-time can be enhanced by using a portion of each GAC image that is larger than the central 25% now considered. Enlargement of the cloud free image data set can permit development of a series of algorithms for correcting imagery for ground reflectance and for atmospheric scattering anisotropy within certain accuracy limits. Empirical correction algorithms used to normalize digital radiance or VIN data must contain factors for growth stage and for instrument spectral response. While it is not possible to correct for random fluctuations in target radiance, it is possible to estimate the necessary radiance difference between targets in order to provide target discrimination and quantification within predetermined limits of accuracy. A major difficulty lies in the lack of documentation of preprocessing algorithms used on AVHRR digital data
Demonstration of angular anisotropy in the output of Thematic Mapper
There is a dependence of TM output (proportional to scene radiance in a manner which will be discussed) upon season, upon cover type and upon view angle. The existence of a significant systematic variation across uniform scenes in p-type (radiometrically and geometrically pre-processed) data is demonstrated. Present pre-processing does remove the effects and the problem must be addressed because the effects are large. While this is in no way attributable to any shortcomings in the thematic mapper, it is an effect which is sufficiently important to warrant more study, with a view to developing suitable pre-processing correction algorithms
Analytical Estimation of the Beam-Beam Interaction Limited Dynamic Apertures and Lifetimes in e^+e^- Circular Colliders
Physically speaking, the delta function like beam-beam nonlinear forces at
interaction points (IPs) act as a sum of delta function nonlinear multipoles.
By applying the general theory established in ref. 1, in this paper we
investigate analytically the beam-beam interaction limited dynamic apertures
and the corresponding beam lifetimes for both the round and the flat beams.
Relations between the beam-beam limited beam lifetimes and the beam-beam tune
shifts are established, which show clearly why experimentally one has always a
maximum beam-beam tune shift, \xi_{y, max}, around 0.045 for e-^+e$^- circular
colliders, and why one can use round beams to double this value approximately.
Comparisons with some machine parameters are given. Finally, we discuss the
mechanism of the luminosity reduction due to a definite collision crossing
angle.Comment: 25 page
On the Evolution of Ion Bunch Profile in the Presence of Longitudinal Coherent Electron Cooling
In the presence of longitudinal coherent electron cooling, the evolution of
the line-density profile of a circulating ion bunch can be described by the 1-D
Fokker-Planck equation. We show that, in the absence of diffusion, the 1-D
equation can be solved analytically for certain dependence of cooling force on
the synchrotron amplitude. For more general cases with arbitrary diffusion, we
solved the 1-D Fokker-Planck equation numerically and the numerical solutions
have been compared with results from macro-particle tracking
Intrabeam scattering analysis of measurements at KEK's ATF damping ring
We derive a simple relation for estimating the relative emittance growth in x
and y due to intrabeam scattering (IBS) in electron storage rings. We show that
IBS calculations for the ATF damping ring, when using the formalism of
Bjorken-Mtingwa, a modified formalism of Piwinski (where eta squared divided by
beta has been replaced by the dispersion invariant), or a simple high-energy
approximate formula all give results that agree well. Comparing theory,
including the effect of potential well bunch lengthening, with a complete set
of ATF steady-state beam size vs. current measurements we find reasonably good
agreement for energy spread and horizontal emittance. The measured vertical
emittance, however, is larger than theory in both offset (zero current
emittance) and slope (emittance change with current). The slope error indicates
measurement error and/or additional current-dependent physics at the ATF; the
offset error, that the assumed Coulomb log is correct to within a factor of
1.75.Comment: 17 pages, 6 figures, .bbl fil
Ratios of Community Respiration to Photosynthesis and Rates of Primary Production in Lake Erie Via Oxygen Isotope Techniques
ABSTRACT. To evaluate levels of primary production and community metabolism in Lake Eri
- …