184 research outputs found
A Bayesian analysis of pentaquark signals from CLAS data
We examine the results of two measurements by the CLAS collaboration, one of
which claimed evidence for a pentaquark, whilst the other found no
such evidence. The unique feature of these two experiments was that they were
performed with the same experimental setup. Using a Bayesian analysis we find
that the results of the two experiments are in fact compatible with each other,
but that the first measurement did not contain sufficient information to
determine unambiguously the existence of a . Further, we suggest a
means by which the existence of a new candidate particle can be tested in a
rigorous manner.Comment: 5 pages, 3 figure
First measurement of direct photoproduction on the proton
We report on the results of the first measurement of exclusive
meson photoproduction on protons for GeV and GeV. Data were collected with the CLAS detector at the Thomas
Jefferson National Accelerator Facility. The resonance was detected via its
decay in the channel by performing a partial wave analysis of the
reaction . Clear evidence of the meson
was found in the interference between and waves at GeV. The -wave differential cross section integrated in the mass range of
the was found to be a factor of 50 smaller than the cross section
for the meson. This is the first time the meson has been
measured in a photoproduction experiment
Light Vector Mesons in the Nuclear Medium
The light vector mesons (, , and ) were produced in
deuterium, carbon, titanium, and iron targets in a search for possible
in-medium modifications to the properties of the meson at normal nuclear
densities and zero temperature. The vector mesons were detected with the CEBAF
Large Acceptance Spectrometer (CLAS) via their decays to . The rare
leptonic decay was chosen to reduce final-state interactions. A combinatorial
background was subtracted from the invariant mass spectra using a
well-established event-mixing technique. The meson mass spectrum was
extracted after the and signals were removed in a nearly
model-independent way. Comparisons were made between the mass spectra
from the heavy targets () with the mass spectrum extracted from the
deuterium target. With respect to the -meson mass, we obtain a small
shift compatible with zero. Also, we measure widths consistent with standard
nuclear many-body effects such as collisional broadening and Fermi motion.Comment: 15 pages, 18 figures, 3 table
Q^2 Dependence of the S_{11}(1535) Photocoupling and Evidence for a P-wave resonance in eta electroproduction
New cross sections for the reaction are reported for total
center of mass energy =1.5--2.3 GeV and invariant squared momentum transfer
=0.13--3.3 GeV. This large kinematic range allows extraction of new
information about response functions, photocouplings, and coupling
strengths of baryon resonances. A sharp structure is seen at 1.7 GeV.
The shape of the differential cross section is indicative of the presence of a
-wave resonance that persists to high . Improved values are derived for
the photon coupling amplitude for the (1535) resonance. The new data
greatly expands the range covered and an interpretation of all data with
a consistent parameterization is provided.Comment: 31 pages, 9 figure
Exclusive electroproduction on the proton at CLAS
The reaction has been measured, using the 5.754
GeV electron beam of Jefferson Lab and the CLAS detector. This represents the
largest ever set of data for this reaction in the valence region. Integrated
and differential cross sections are presented. The , and
dependences of the cross section are compared to theoretical calculations based
on -channel meson-exchange Regge theory on the one hand and on quark handbag
diagrams related to Generalized Parton Distributions (GPDs) on the other hand.
The Regge approach can describe at the 30% level most of the features
of the present data while the two GPD calculations that are presented in this
article which succesfully reproduce the high energy data strongly underestimate
the present data. The question is then raised whether this discrepancy
originates from an incomplete or inexact way of modelling the GPDs or the
associated hard scattering amplitude or whether the GPD formalism is simply
inapplicable in this region due to higher-twists contributions, incalculable at
present.Comment: 29 pages, 29 figure
First measurement of coherent -meson photoproduction on deuteron at low energies
The cross section and decay angular distributions for the coherent \phi meson
photoproduction on the deuteron have been measured for the first time up to a
squared four-momentum transfer t =(p_{\gamma}-p_{\phi})^2 =-2 GeV^2/c^2, using
the CLAS detector at the Thomas Jefferson National Accelerator Facility. The
cross sections are compared with predictions from a re-scattering model. In a
framework of vector meson dominance, the data are consistent with the total
\phi-N cross section \sigma_{\phi N} at about 10 mb. If vector meson dominance
is violated, a larger \sigma_{\phi N} is possible by introducing larger t-slope
for the \phi N \to \phi N process than that for the \gamma N \to \phi N
process. The decay angular distributions of the \phi are consistent with
helicity conservation.Comment: 6 page
Photodisintegration of He into p+t
The two-body photodisintegration of He into a proton and a triton has
been studied using the CEBAF Large-Acceptance Spectrometer (CLAS) at Jefferson
Laboratory. Real photons produced with the Hall-B bremsstrahlung-tagging system
in the energy range from 0.35 to 1.55 GeV were incident on a liquid He
target. This is the first measurement of the photodisintegration of He
above 0.4 GeV. The differential cross sections for the He
reaction have been measured as a function of photon-beam energy and
proton-scattering angle, and are compared with the latest model calculations by
J.-M. Laget. At 0.6-1.2 GeV, our data are in good agreement only with the
calculations that include three-body mechanisms, thus confirming their
importance. These results reinforce the conclusion of our previous study of the
three-body breakup of He that demonstrated the great importance of
three-body mechanisms in the energy region 0.5-0.8 GeV .Comment: 13 pages submitted in one tgz file containing 2 tex file and 22
postscrip figure
A Precise Measurement of the Neutron Magnetic Form Factor GMn in the Few-GeV2 Region
The neutron elastic magnetic form factor GMn has been extracted from
quasielastic electron scattering data on deuterium with the CEBAF Large
Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic coverage of the
measurement is continuous from Q2=1 GeV2 to 4.8 GeV2. High precision was
achieved by employing a ratio technique in which many uncertainties cancel, and
by a simultaneous in-situ calibration of the neutron detection efficiency, the
largest correction to the data. Neutrons were detected using the CLAS
electromagnetic calorimeters and the time-of-flight scintillators. Data were
taken at two different electron beam energies, allowing up to four
semi-independent measurements of GMn to be made at each value of Q2. The dipole
parameterization is found to provide a good description of the data over the
measured Q2 range.Comment: 14 pages, 5 figures, revtex4, submitted to Physical Review Letters,
Revised version has changes recommended by journal referee
Electroproduction of mesons at GeV measured with the CLAS spectrometer
Electroproduction of exclusive vector mesons has been studied with the
CLAS detector in the kinematical range GeV,
GeV, and GeV. The
scaling exponent for the total cross section as was
determined to be . The slope of the four-momentum transfer
distribution is GeV. Under the assumption of
s-channel helicity conservation (SCHC), we determine the ratio of longitudinal
to transverse cross sections to be . A 2-gluon exchange model
is able to reproduce the main features of the data.Comment: Phys Rev C, 15 pages, 18 figure
- …