179 research outputs found

    Thin films of calcium phosphate and titanium dioxide by a sol-gel route: a new method for coating medical implants

    Get PDF
    Titanium is a commonly used biomaterial for dental and orthopaedic applications. To increase its ability to bond with bone, some attempts were made to coat its surface with calcium phosphate (CaP). This paper describes a new type of coating. Instead of a pure CaP layer, a mixing of titanium dioxide (TiO2) and CaP is fabricated and deposited as a coating. These layers are deposited by a sol-gel route on pure titanium substrates using various pre-treatments. The method consists of mixing a solution of tetrabutyl ortho-titanate or a sol of titanium dioxide with a solution of calcium nitrate and phosphorous esters. This composite is deposited on to commercially pure titanium plates, mechanically polished or blasted with pure crystalline aluminum oxide, using the spin-coating technique. These coatings are then fired at 650 or 850°C for various times. The samples are characterized by X-ray diffraction for their crystallinity, X-ray photoelectron spectroscopy for their surface chemical composition and scanning electron microscopy for their topography. Samples treated at 850°C present a well-pronounced crystallinity, and a high chemical purity at the surface. The topography is strongly related to the viscosity of the precursor and the substrate pre-treatment. Possibilities to structure the outermost layer are presented. © 1999 Kluwer Academic Publisher

    Influence of Enterococci and Thermophilic Starter Bacteria on Cheddar Cheese Flavour

    Get PDF
    End of Project ReportThis project set out to identify suitable enterococci and thermophilic starter strains which could be added to the cheese during manufacture (as starter adjuncts) with the specific aims of enhancing flavour during ripening as well as facilitating flavour diversity - a trait sought by many commercial Cheddar companies. This project confirmed the potential of thermophilic lactic acid strains to affect flavour when used as starter adjuncts in Cheddar cheese manufacture. Their use can also lead to the development of novel flavours. Many adjunct cultures proposed to-date to enhance Cheddar flavour are composed of strains of lactococcal starter, selected for their flavouring capacity. However, application of such strains in industry would lead to increased probability of phage attack on the primary starter. On the other hand, thermophilic lactic acid strains are phage unrelated to conventional starter and thus would not lead to the introduction of starter specific phage into the cheese plant. A thermophilic strain from the Moorepark collection (DPC 4571) was shown to have major commercial potential as a flavour enhancer.Department of Agriculture, Food and the Marin

    Safety, tolerability and efficacy of intradermal rabies immunization with DebioJect™.

    Get PDF
    In a single-center study, 66 healthy volunteers aged between 18 and 50years were randomized to be immunized against rabies with three different injection routes: intradermal with DebioJect™ (IDJ), standard intradermal with classical needle (IDS), also called Mantoux method, and intramuscular with classical needle (IM). "Vaccin rabique Pasteur®" and saline solution (NaCl 0.9%) were administered at D0, D7 and D28. Antigen doses for both intradermal routes were 1/5 of the dose for IM. Tolerability, safety and induced immunogenicity of IDJ were compared to IDS and IM routes. Pain was evaluated at needle insertion and at product injection for all vaccination visits. Solicited Adverse Event (SolAE) and local reactogenicity symptoms including pain, redness and pruritus were recorded daily following each vaccination visit. Adverse events (AE) were recorded over the whole duration of the study. Humoral immune response was measured by assessing the rabies virus neutralizing antibody (VNA) titers using Rapid Fluorescent Focus Inhibition Test (RFFIT). Results demonstrated that the DebioJect™ is a safe, reliable and efficient device. Significant decreases of pain at needle insertion and at vaccine injection were reported with IDJ compared to IDS and IM. All local reactogenicity symptoms (pain, redness and pruritus) after injection with either vaccine or saline solution, were similar for IDJ and IDS, except that IDJ injection induced more redness 30min after saline solution. No systemic SolAE was deemed related to DebioJect™ and classical needles. No AE was deemed related to DebioJect™. No Serious Adverse Event (SAE) was reported during the study. At the end of the study all participants were considered immunized against rabies and no significant difference in humoral response was observed between the 3 studied routes

    Magneto-Roton Modes of the Ultra Quantum Crystal: Numerical Study

    Full text link
    The Field Induced Spin Density Wave phases observed in quasi-one-dimensional conductors of the Bechgaard salts family under magnetic field exhibit both Spin Density Wave order and a Quantized Hall Effect, which may exhibit sign reversals. The original nature of the condensed phases is evidenced by the collective mode spectrum. Besides the Goldstone modes, a quasi periodic structure of Magneto-Roton modes, predicted to exist for a monotonic sequence of Hall Quantum numbers, is confirmed, and a second mode is shown to exist within the single particle gap. We present numerical estimates of the Magneto-Roton mode energies in a generic case of the monotonic sequence. The mass anisotropy of the collective mode is calculated. We show how differently the MR spectrum evolves with magnetic field at low and high fields. The collective mode spectrum should have specific features, in the sign reversed "Ribault Phase", as compared to modes of the majority sign phases. We investigate numerically the collective mode in the Ribault Phase.Comment: this paper incorporates material contained in a previous cond-mat preprint cond-mat/9709210, but cannot be described as a replaced version, because it contains a significant amount of new material dealing with the instability line and with the topic of Ribault Phases. It contains 13 figures (.ps files

    Sign reversals of the Quantum Hall Effect in quasi-1D conductors

    Full text link
    The sign reversals of the Quantum Hall Effect observed in quasi-one-dimensional conductors of the Bechgaard salts family are explained within the framework of the quantized nesting model. The sequence of reversals is driven by slight modifications of the geometry of the Fermi surface. It is explained why only even phases can have signign reversals and why negative phases are less stable than positive ones.Comment: 4 LaTex pages, 3 Postscript figure

    Sign reversals of the quantum Hall effect and helicoidal magnetic-field-induced spin-density waves in quasi-one-dimensional organic conductors

    Full text link
    We study the effect of umklapp scattering on the magnetic-field-induced spin-density-wave phases, which are experimentally observed in the quasi-one-dimensional organic conductors of the Bechgaard salts family. Within the framework of the quantized nesting model, we show that umklapp processes may naturally explain sign reversals of the quantum Hall effect (QHE) observed in these conductors. Moreover, umklapp scattering can change the polarization of the spin-density wave (SDW) from linear (sinusoidal SDW) to circular (helicoidal SDW). The QHE vanishes in the helicoidal phases, but a magnetoelectric effect appears. These two characteristic properties may be utilized to detect the magnetic-field-induced helicoidal SDW phases experimentally.Comment: 4 pages, latex, 3 figure

    Collective modes in a system with two spin-density waves: the `Ribault' phase of quasi-one-dimensional organic conductors

    Full text link
    We study the long-wavelength collective modes in the magnetic-field-induced spin-density-wave (FISDW) phases experimentally observed in organic conductors of the Bechgaard salts family, focusing on phases that exhibit a sign reversal of the quantum Hall effect (Ribault anomaly). We have recently proposed that two SDW's coexist in the Ribault phase, as a result of Umklapp processes. When the latter are strong enough, the two SDW's become circularly polarized (helicoidal SDW's). In this paper, we study the collective modes which result from the presence of two SDW's. We find two Goldstone modes, an out-of-phase sliding mode and an in-phase spin-wave mode, and two gapped modes. The sliding Goldstone mode carries only a fraction of the total optical spectral weight, which is determined by the ratio of the amplitude of the two SDW's. In the helicoidal phase, all the spectral weight is pushed up above the SDW gap. We also point out similarities with phase modes in two-band or bilayer superconductors. We expect our conclusions to hold for generic two-SDW systems.Comment: Revised version, 25 pages, RevTex, 7 figure

    Fully relativistic calculation of magnetic properties of Fe, Co and Ni adclusters on Ag(100)

    Full text link
    We present first principles calculations of the magnetic moments and magnetic anisotropy energies of small Fe, Co and Ni clusters on top of a Ag(100) surface as well as the exchange-coupling energy between two single adatoms of Fe or Co on Ag(100). The calculations are performed fully relativistically using the embedding technique within the Korringa-Kohn-Rostoker method. The magnetic anisotropy and the exchange-coupling energies are calculated by means of the force theorem. In the case of adatoms and dimers of iron and cobalt we obtain enhanced spin moments and, especially, unusually large orbital moments, while for nickel our calculations predict a complete absence of magnetism. For larger clusters, the magnitudes of the local moments of the atoms in the center of the cluster are very close to those calculated for the corresponding monolayers. Similar to the orbital moments, the contributions of the individual atoms to the magnetic anisotropy energy strongly depend on the position, hence, on the local environment of a particular atom within a given cluster. We find strong ferromagnetic coupling between two neighboring Fe or Co atoms and a rapid, oscillatory decay of the exchange-coupling energy with increasing distance between these two adatoms.Comment: 8 pages, ReVTeX + 4 figures (Encapsulated Postscript), submitted to PR

    Effect of umklapp scattering on the magnetic-field-induced spin-density waves in quasi-one-dimensional organic conductors

    Full text link
    We study the effect of umklapp scattering on the magnetic-field-induced spin-density-wave (FISDW) phases which are experimentally observed in the quasi-one-dimensional organic conductors of the Bechgaard salts family. Within the framework of the quantized nesting model, we show that the transition temperature is determined by a modified Stoner criterion which includes the effect of umklapp scattering. We determine the SDW polarization (linear or circular) by analyzing the Ginzburg-Landau expansion of the free energy. We also study how umklapp processes modify the quantum Hall effect (QHE) and the spectrum of the FISDW phases. We find that umklapp scattering stabilizes phases which exhibit a sign reversal of the QHE, as experimentally observed in the Bechgaard salts. These ``negative'' phases are characterized by the simultaneous existence of two SDWs with comparable amplitudes. As the umklapp scattering strength increases, they may become helicoidal (circularly polarized SDWs). The QHE vanishes in the helicoidal phases, but a magnetoelectric effect appears. These two characteristic properties may be utilized to detect the magnetic-field-induced helicoidal SDW phases experimentally.Comment: Revtex, 27 pages, 9 figure

    The Atapuerca sites and the Ibeas hominids

    Get PDF
    The Atapuerca railway Trench and Ibeas sites near Burgos, Spain, are cave fillings that include a series of deposits ranging from below the Matuyama/Bruhnes reversal up to the end of Middle Pleistocene. The lowest fossil-bearing bed in the Trench contains an assemblage of large and small Mammals including Mimomys savini, Pitymys gregaloides, Pliomys episcopalis, Crocuta crocuta, Dama sp. and Megacerini; the uppermost assemblage includes Canis lupus, Lynx spelaea, Panthera (Leo) fossilis, Felis sylvestris, Equus caballus steinheimensis, E.c. germanicus, Pitymys subtenaneus, Microtus arvalis agrestis, Pliomys lenki, and also Panthera toscana, Dicerorhinus bemitoechus, Bison schoetensacki, which are equally present in the lowest level. The biostratigraphic correlation and dates of the sites are briefly discussed, as are the paleoclimatic interpretation of the Trench sequences. Stone artifacts are found in several layers; the earliest occurrences correspond to the upper beds containing Mimomys savini. A set of preserved human occupation floors has been excavated in the top fossil-bearing beds. The stone-tool assemblages of the upper levels are of upper-medial Acheulean to Charentian tradition. The rich bone breccia SH, in the Cueva Mayor-Cueva del Silo, Ibeas de Juarros, is a derived deposit, due to a mud flow that dispersed and carried the skeletons of many carnivores and humans. The taxa represented are: Vrsus deningeri (largely dominant), Panthera (Leo) fossilis, Vulpes vulpes, Homo sapiens var. Several traits of both mandibular and cranial remains are summarized. Preliminary attempts at dating suggest that the Ibeas fossil man is older than the Last Interglacial, or oxygen-isotope stage 5
    corecore