44 research outputs found

    Characterising the effect of laser metal deposited Ti6Al4V/Cu composites in simulated body fluid for biomedical application

    Get PDF
    Ti6Al4V alloy has been known to have very excellent corrosion resistance due to the oxide layer formed on its surface. Due to this property, the alloy is found applicable for biomedical implants. Copper shows an excellent antimicrobial property and has been found to stabilize the immune system. In this study, laser metal deposition of Ti6Al4V powder and Cu powder on Ti6Al4V substrates were conducted by varying the laser power between 600 W and 1800 W while the scanning speed, the powder flow rate and the gas flow rate were kept constant. The surface behaviour and the morphologies of the composites were evaluated under the microscope and the SEM after soaking for 4 hours, 5 days and 2 weeks respectively. The simulated body fluid (hank’s solution) was maintained at normal body temperature of about 37±1oC. The surfaces showed fracture topography with porous bone-like structures and some trivial pitting were observed

    Revolutionary additive manufacturing : an overview

    Get PDF
    Consumer demands are moving away from standardized to customized products, as such, the evolution of alternative manufacturing techniques has become imperative. Additive manufacturing (AM) is a process of building components layer by layer as against the traditional methods which are subtractive in nature. Though AM offers lots of advantages over traditional manufacturing techniques, its wide application is still however in the infancy phase. Despite all the benefits derived from AM technology, there are still a lot of unresolved issues with the technology that has hindered its performance thereby limiting its application to high tolerant jobs. This paper takes a look at some important AM technologies, some problems currently facing AM technology at large and proposes some solutions to these problems. A major known drawback in AM is poor dimensional accuracy and poor surface finish, only the layer height and melt pool temperature are controlled to solve this problem in the literature. The stair-stepping effect in adaptive manufacturing is rooted in a natural phenomenon of surface tension which is the cause of the poor surface finish and in combination with other factors is responsible for the poor dimensional accuracy. An adaptive controller is proposed for removing stair-stepping effect to improve the dimension accuracy, the surface finish and the mechanical properties of the components. Successful implementation of these proposed controllers will greatly improve the performance of AM technologies and also aid its wide application for end use products. Further research work is also suggested to improve the overall AM performance

    Computational Dynamics of Anti-Corrosion Performance of Laser Alloyed Metallic Materials

    Get PDF
    Laser surface alloying (LSA) is a material processing technique that utilizes the high power density available from defocused laser beam to melt both reinforcement powders and a part of the underlying substrate. Because melting occurs solitary at the surface, large temperature gradients exist across the boundary between the underlying solid substrate and the melted surface region, which results in rapid self-quenching and resolidifications. Reinforcement powders are deposited in the molten pool of the substrate to produce corrosion-resistant coatings. These processes influence the structure and properties of the alloyed region. A 3D mathematical model is developed to obtain insights on the behavior of laser melted pools subjected to various process parameters. It is expected that the melt pool flow, thermal and solidification characteristics will have a profound effect on the microstructure of the solidified region

    Bioceramic hydroxyapatite coating fabricated on TI-6AL-4V using Nd:YAG laser

    Get PDF
    A method of synthesising a biocompatible HAP coating is presented. In the current study, Nd:YAG laser was used to directly melt pre-place HAP powder beds on Ti-6Al-4V. The processing parameters used were 750 W laser power, 5 mm/s scanning speed and 27° inclined beam plane. The coating was studied under white light and scanning electron microscope where it was possible to characterise the microstructures. The produced coating was characterised of mixed morphologies of HAP, short and elongated titanium needles at the surface while in the middle of the coating dendrite trunks without arms were observed. This observation is related to the heat inputs, dilution and melting of the substrate and powder during processing. The absence of the arms growing from the trunks indicated low heat inputs. In addition, the microstructure of the HAP after soaking in Hanks’ solution indicated octagonal and hexagonal crystals of HAP. The hardness values indicated good metallurgical bonding at the interface. In conclusion, this study was successful in fabricating a desirable coating of HAP on Ti-6Al-4V for biomedical applications. This work highlights that even though laser power and scanning speed are predominantly influential parameter settings, it is also necessary to consider the angle at which the laser beam is scanned across the material

    Influence of laser power on microstructure of laser metal deposited 17-4 ph stainless steel

    Get PDF
    Abstract: The influence of laser power on the microstructure of 17-4 PH stainless steel produced by laser metal deposition was investigated. Multiple-track of 17-4 stainless steel powder was deposited on 316 stainless steel substrate using laser metal deposition, an additive manufacturing process. In this research, laser power was varied between 1.0 kW and 2.6 kW with scanning speed fixed at 1.2 m/s. The powder flow rate and the gas flow rate were also kept constant at values of 5 g/min and 2 l/min respectively. The microstructure was studied under optical microscope and it revealed that the microstructure was dendritic in structure with finer and lesser δ-ferrite at low laser power while the appearance of coarse and more δ-ferrite are seen at higher laser power

    Heat treatment response and characterization of Ti6Al4V + xMo produced by laser metal deposition

    Get PDF
    During the laser metal deposition additive manufacturing processing of Ti6Al4V ELI alloy, the parts produced were exposed to high levels of thermal gradients, which resulted from rapid heating and cooling rates in the material. This had an adverse effect on the material properties, as tensile residual stresses were created in the parts and increased the strength while significantly reducing ductility. Additionally, the presence of columnar grains compromised the material properties because it resulted in inhomogeneous microstructures that exhibit anisotropy in parts. This study investigated the influence of β annealing temperatures on the microstructure of Ti6Al4V ELI alloy produced during laser metal deposition, and the Ti6Al4V ELI in-situ alloyed with varying molybdenum content. The observations made included a temperature driven phase transformation, which resulted in a change from columnar to equiaxed grains due to heat treatment of the Ti6Al4V ELI alloy, while the solidification structure of the alloy changed from planar to cellular due to the addition of Mo. The Ti6Al4V ELI alloy heat treated at 1000 °C reported a hardness profile of 204 ± 5 HV0.3, which was comparable to the reported hardness (206 ± 34 HV0.3) of the Ti6Al4V ELI in-situ alloyed with 10 mass percent Mo (10% Mo). This implies that the effects of the in-situ alloying of Ti6Al4V ELI with 10% Mo are comparable to the heat treatment of Ti6Al4V ELI alloy at a β annealing temperature of 1000 °C, in terms of stabilization of the β-phase.The Department of Science and Innovation (DSI) and the Council for Scientific and Industrial Research-Young Researcher Empowerment Fund (CSIR-YREF).http://www.elsevier.com/locate/matprhj2022Materials Science and Metallurgical Engineerin

    Bee in review more than box-ticking required

    No full text
    No Abstract

    Characterization of laser metal deposited 316L stainless steel

    No full text
    Abstract: Laser metal deposition (LMD) is an innovative manufacturing technique that uses laser to melt powders to fabricate fully dense components layer by layer. It is capable of processing different metallic powders and can also be used for consolidating different powder to produce custom alloys or functionally graded materials (FGM). The properties of laser processed materials is dependent on the final microstructure of the parts which in turn is dependent on the LMD processing parameters. This study investigates the effects of laser power on the structural integrity, microstructure and microhardness of laser deposited 316L stainless steel. The result showed that the laser power has much influence on the evolving microstructure and microhardness of the components. The average microhardness of the samples were observed to decrease as the laser power increased due to grain coarsening
    corecore