42 research outputs found

    Universally Coupled Massive Gravity, II: Densitized Tetrad and Cotetrad Theories

    Full text link
    Einstein's equations in a tetrad formulation are derived from a linear theory in flat spacetime with an asymmetric potential using free field gauge invariance, local Lorentz invariance and universal coupling. The gravitational potential can be either covariant or contravariant and of almost any density weight. These results are adapted to produce universally coupled massive variants of Einstein's equations, yielding two one-parameter families of distinct theories with spin 2 and spin 0. The theories derived, upon fixing the local Lorentz gauge freedom, are seen to be a subset of those found by Ogievetsky and Polubarinov some time ago using a spin limitation principle. In view of the stability question for massive gravities, the proven non-necessity of positive energy for stability in applied mathematics in some contexts is recalled. Massive tetrad gravities permit the mass of the spin 0 to be heavier than that of the spin 2, as well as lighter than or equal to it, and so provide phenomenological flexibility that might be of astrophysical or cosmological use.Comment: 2 figures. Forthcoming in General Relativity and Gravitatio

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters

    Assertion-based encapsulation, object invariants and simulations

    No full text
    Abstract. In object-oriented programming, reentrant method invocations and shared references make it difficult to achieve adequate encapsulation for sound modular reasoning. This tutorial paper surveys recent progress using auxiliary state (ghost fields) to describe and achieve encapsulation. Encapsulation is assessed in terms of modular reasoning about invariants and simulations.

    Fluctuations and transport in the TCV scrape-off layer

    No full text
    Fluctuations and particle transport in the scrape-off layer of TCV plasmas have been investigated by probe measurements and direct comparison with two-dimensional interchange turbulence simulations at the outer midplane. The experiments demonstrate that with increasing line-averaged core plasma density, the radial particle density profile scale length becomes broader. The particle and radial flux density statistics in the far scrape-off layer exhibit a high degree of statistical similarity with respect to changes in the line-averaged density. The plasma flux onto the main chamber wall at the outer midplane scales linearly with the local particle density, suggesting that the particle flux here can be parameterized in terms of an effective convection velocity. Experimental probe measurements also provide evidence for significant parallel flows in the scrape-off layer caused by ballooning in the transport of particles and heat into the scrape-off layer. The magnitude of this flow estimated from pressure fluctuation statistics is found to compare favourably with the measured flow offset derived by averaging data obtained from flow profiles observed in matched forward and reversed field discharges. An interchange turbulence simulation has been performed for a single, relatively high density case, where comparison between code and experiment has been possible. Good agreement is found for almost all aspects of the experimental measurements, indicating that plasma fluctuations an
    corecore