1,645 research outputs found

    Saturation of atomic transitions using sub-wavelength diameter tapered optical fibers in rubidium vapor

    Full text link
    We experimentally investigate ultralow-power saturation of the rubidium D2 transitions using a tapered optical fiber (TOF) suspended in a warm Rb vapor. A direct comparison of power-dependent absorption measurements for the TOF system with those obtained in a standard free-space vapor cell system highlights the differences in saturation behavior for the two systems. The effects of hyperfine pumping in the TOF system are found to be minimized due to the short atomic transit times through the highly confined evanescent optical mode guided by the TOF. The TOF system data is well-fit by a relatively simple empirical absorption model that indicates nanoWatt-level saturation powers.Comment: 6 pages, 6 figure

    Parametric performance of circumferentially grooved heat pipes with homogeneous and graded-porosity slab wicks at cryogenic temperatures

    Get PDF
    A recently developed, potentially high-performance nonarterial wick has been extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 K and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: (1) maximum heat pipe performance as a function of fluid inventory, (2) maximum performance as a function of operating temperature, (3) maximum performance as a function of evaporator elevation, and (4) influence of slab wick orientation on performance. The experimental data was compared with theoretical predictions obtained with the computer program GRADE

    Bounds on the Probability of Success of Postselected Non-linear Sign Shifts Implemented with Linear Optics

    Full text link
    The fundamental gates of linear optics quantum computation are realized by using single photons sources, linear optics and photon counters. Success of these gates is conditioned on the pattern of photons detected without using feedback. Here it is shown that the maximum probability of success of these gates is typically strictly less than 1. For the one-mode non-linear sign shift, the probability of success is bounded by 1/2. For the conditional sign shift of two modes, this probability is bounded by 3/4. These bounds are still substantially larger than the highest probabilities shown to be achievable so far, which are 1/4 and 2/27, respectively.Comment: 6 page

    Cyclical Quantum Memory for Photonic Qubits

    Get PDF
    We have performed a proof-of-principle experiment in which qubits encoded in the polarization states of single-photons from a parametric down-conversion source were coherently stored and read-out from a quantum memory device. The memory device utilized a simple free-space storage loop, providing a cyclical read-out that could be synchronized with the cycle time of a quantum computer. The coherence of the photonic qubits was maintained during switching operations by using a high-speed polarizing Sagnac interferometer switch.Comment: 4 pages, 5 figure

    Linear optics implementation of general two-photon projective measurement

    Get PDF
    We will present a method of implementation of general projective measurement of two-photon polarization state with the use of linear optics elements only. The scheme presented succeeds with a probability of at least 1/16. For some specific measurements, (e.g. parity measurement) this probability reaches 1/4.Comment: 8 page

    Experimental Controlled-NOT Logic Gate for Single Photons in the Coincidence Basis

    Full text link
    We report a proof-of-principle demonstration of a probabilistic controlled-NOT gate for single photons. Single-photon control and target qubits were mixed with a single ancilla photon in a device constructed using only linear optical elements. The successful operation of the controlled-NOT gate relied on post-selected three-photon interference effects which required the detection of the photons in the output modes.Comment: 4 pages, 4 figures; minor change

    Photon number resolution using a time-multiplexed single-photon detector

    Full text link
    Photon number resolving detectors are needed for a variety of applications including linear-optics quantum computing. Here we describe the use of time-multiplexing techniques that allows ordinary single photon detectors, such as silicon avalanche photodiodes, to be used as photon number-resolving detectors. The ability of such a detector to correctly measure the number of photons for an incident number state is analyzed. The predicted results for an incident coherent state are found to be in good agreement with the results of a proof-of-principle experimental demonstration.Comment: REVTeX4, 6 pages, 8 eps figures, v2: minor changes, v3: changes in response to referee report, appendix added, 1 reference adde

    Demonstration of Non-Deterministic Quantum Logic Operations using Linear Optical Elements

    Full text link
    Knill, Laflamme, and Milburn recently showed that non-deterministic quantum logic operations could be performed using linear optical elements, additional photons (ancilla), and post-selection based on the output of single-photon detectors [Nature 409, 46 (2001)]. Here we report the experimental demonstration of two logic devices of this kind, a destructive controlled-NOT (CNOT) gate and a quantum parity check. These two devices can be combined with a pair of entangled photons to implement a conventional (non-destructive) CNOT that succeeds with a probability of 1/4.Comment: 4 pages, 5 figures; Minor change
    corecore