3,683 research outputs found

    Abrupt change in climate and climate models

    Get PDF
    First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulation seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse in the 21st century of the thermohaline circulation is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work

    Antarctic killer whales make rapid, round-trip movements to subtropical waters: evidence for physiological maintenance migrations?

    Get PDF
    Killer whales (Orcinus orca) are important predators in high latitudes, where their ecological impact is mediated through their movements. We used satellite telemetry to provide the first evidence of migration for killer whales, characterized by fast (more than 12 km h−1, 6.5 knots) and direct movements away from Antarctic waters by six of 12 type B killer whales tagged when foraging near the Antarctic Peninsula, including all tags transmitting for more than three weeks. Tags on five of these whales revealed consistent movements to subtropical waters (30–37° S) off Uruguay and Brazil, in surface water temperatures ranging from −1.9°C to 24.2°C; one 109 day track documented a non-stop round trip of almost 9400 km (5075 nmi) in just 42 days. Although whales travelled slower in the warmest waters, there was no obvious interruption in swim speed or direction to indicate calving or prolonged feeding. Furthermore, these movements were aseasonal, initiating over 80 days between February and April; one whale returned to within 40 km of the tagging site at the onset of the austral winter in June. We suggest that these movements may represent periodic maintenance migrations, with warmer waters allowing skin regeneration without the high cost of heat loss: a physiological constraint that may also affect other whales

    Transport composite fuselage technology: Impact dynamics and acoustic transmission

    Get PDF
    A program was performed to develop and demonstrate the impact dynamics and acoustic transmission technology for a composite fuselage which meets the design requirements of a 1990 large transport aircraft without substantial weight and cost penalties. The program developed the analytical methodology for the prediction of acoustic transmission behavior of advanced composite stiffened shell structures. The methodology predicted that the interior noise level in a composite fuselage due to turbulent boundary layer will be less than in a comparable aluminum fuselage. The verification of these analyses will be performed by NASA Langley Research Center using a composite fuselage shell fabricated by filament winding. The program also developed analytical methodology for the prediction of the impact dynamics behavior of lower fuselage structure constructed with composite materials. Development tests were performed to demonstrate that the composite structure designed to the same operating load requirement can have at least the same energy absorption capability as aluminum structure

    Mean-field methods in evolutionary duplication-innovation-loss models for the genome-level repertoire of protein domains

    Full text link
    We present a combined mean-field and simulation approach to different models describing the dynamics of classes formed by elements that can appear, disappear or copy themselves. These models, related to a paradigm duplication-innovation model known as Chinese Restaurant Process, are devised to reproduce the scaling behavior observed in the genome-wide repertoire of protein domains of all known species. In view of these data, we discuss the qualitative and quantitative differences of the alternative model formulations, focusing in particular on the roles of element loss and of the specificity of empirical domain classes.Comment: 10 Figures, 2 Table

    Elementary derivation of Spitzer's asymptotic law for Brownian windings and some of its physical applications

    Full text link
    A simple derivation of Spitzer'z asymptotic law for Brownian windings [Trans.Am.Math.Soc.87,187 (1958)]is presented along with its generalizations >.These include the cases of planar Brownian walks interacting with a single puncture and Brownian walks on a single truncated cone with variable conical angle interacting with the truncated conical tip.Such situations are typical in the theories of quantum Hall effect and 2+1 quantum gravity, respectively .They also have some applications in polymer physic

    Windings of the 2D free Rouse chain

    Full text link
    We study long time dynamical properties of a chain of harmonically bound Brownian particles. This chain is allowed to wander everywhere in the plane. We show that the scaling variables for the occupation times T_j, areas A_j and winding angles \theta_j (j=1,...,n labels the particles) take the same general form as in the usual Brownian motion. We also compute the asymptotic joint laws P({T_j}), P({A_j}), P({\theta_j}) and discuss the correlations occuring in those distributions.Comment: Latex, 17 pages, submitted to J. Phys.

    Discrete Feynman-Kac formulas for branching random walks

    Full text link
    Branching random walks are key to the description of several physical and biological systems, such as neutron multiplication, genetics and population dynamics. For a broad class of such processes, in this Letter we derive the discrete Feynman-Kac equations for the probability and the moments of the number of visits nVn_V of the walker to a given region VV in the phase space. Feynman-Kac formulas for the residence times of Markovian processes are recovered in the diffusion limit.Comment: 4 pages, 3 figure

    How long does it take to pull an ideal polymer into a small hole?

    Full text link
    We present scaling estimates for characteristic times τlin\tau_{\rm lin} and τbr\tau_{\rm br} of pulling ideal linear and randomly branched polymers of NN monomers into a small hole by a force ff. We show that the absorbtion process develops as sequential straightening of folds of the initial polymer configuration. By estimating the typical size of the fold involved into the motion, we arrive at the following predictions: τlin(N)∼N3/2/f\tau_{\rm lin}(N) \sim N^{3/2}/f and τbr(N)∼N5/4/f\tau_{\rm br}(N) \sim N^{5/4}/f, and we also confirm them by the molecular dynamics experiment.Comment: 4 pages, 3 figure
    • …
    corecore