161 research outputs found

    Persistence of Inflammatory Response to Intense Exercise in Diabetic Rats

    Get PDF
    In this study we evaluated the onset and resolution of inflammation in control and streptozotocin-induced diabetic rats subjected to a single session of intense exercise. The following measurements were carried out prior to, immediately after, and 2 and 24 hours after exercise: plasma levels of proinflammatory cytokines (TNF-α, IL-1β, IL-6, CINC-2α/β, MIP-3α, and IL-6), immunoglobulins (IgA and IgM), acute phase proteins (CRP and C3), and creatine kinase (CK) activity. We also examined the occurrence of macrophage death by measurements of macrophages necrosis (loss of membrane integrity) and DNA fragmentation. An increase was observed in the concentration of IL-1β (3.3-fold) and TNF-α (2.0-fold) and in the proportion of necrotic macrophages (4.5-fold) in diabetic rats 24 hours after exercise, while the control group showed basal measurements. Twenty-four hours after the exercise, serum CK activity was elevated in diabetic rats but not in control animals. We concluded that lesion and inflammations resulting from intense exercise were greater and lasted longer in diabetic animals than in nondiabetic control rats

    Persistence of Inflammatory Response to Intense Exercise in Diabetic Rats

    Get PDF
    In this study we evaluated the onset and resolution of inflammation in control and streptozotocin-induced diabetic rats subjected to a single session of intense exercise. The following measurements were carried out prior to, immediately after, and 2 and 24 hours after exercise: plasma levels of proinflammatory cytokines (TNF-α, IL-1β, IL-6, CINC-2α/β, MIP-3α, and IL-6), immunoglobulins (IgA and IgM), acute phase proteins (CRP and C3), and creatine kinase (CK) activity. We also examined the occurrence of macrophage death by measurements of macrophages necrosis (loss of membrane integrity) and DNA fragmentation. An increase was observed in the concentration of IL-1β (3.3-fold) and TNF-α (2.0-fold) and in the proportion of necrotic macrophages (4.5-fold) in diabetic rats 24 hours after exercise, while the control group showed basal measurements. Twenty-four hours after the exercise, serum CK activity was elevated in diabetic rats but not in control animals. We concluded that lesion and inflammations resulting from intense exercise were greater and lasted longer in diabetic animals than in nondiabetic control rats

    Metabolic fate of glutamine in lymphocytes, macrophages and neutrophils

    Get PDF
    Eric Newsholmes laboratory was the first to show glutamine utilization by lymphocytes and macrophages. Recently, we have found that neutrophils also utilize glutamine. This amino acid has been shown to play a role in lymphocyte proliferation, cytokine production by lymphocytes and macrophages and phagocytosis and superoxide production by macrophages and neutrophils. Knowledge of the metabolic fate of glutamine in these cells is important for the understanding of the role and function of this amino acid in the maintenance of the proliferative, phagocytic and secretory capacities of these cells. Glutamine and glucose are poorly oxidized by these cells and might produce important precursors for DNA, RNA, protein and lipid synthesis. The high rate of glutamine utilization and its importance in such cells have raised the question as to the source of this glutamine, which, according to current evidence, appears to be muscle

    Hydrolyzed whey protein enriched with glutamine dipeptide attenuates skeletal muscle damage and improves physical exhaustion test performance in triathletes

    Get PDF
    PurposeTo investigate the effects of hydrolyzed whey protein enriched with glutamine dipeptide on the percentage of oxygen consumption, second ventilatory threshold, duration and total distance covered, and skeletal muscle damage during an exhaustion test in elite triathletes.MethodsThe study was a randomized, double-blinded, placebo-controlled, crossover trial. Nine male triathletes performed a progressive incremental test on a treadmill ergometer (1.4 km h−1·3 min−1) 30 min after ingesting either 50 g of maltodextrin plus four tablets of 700 mg hydrolyzed whey protein enriched with 175 mg of glutamine dipeptide diluted in 250 ml of water (MGln) or four tablets of 700 mg maltodextrin plus 50 g maltodextrin diluted in 250 ml of water (M). Each athlete was submitted to the two dietary treatments and two corresponding exhaustive physical tests with an interval of one week between the interventions. The effects of the two treatments were then compared within the same athlete. Maximal oxygen consumption, percentage of maximal oxygen consumption, second ventilatory threshold, and duration and total distance covered were measured during the exhaustion test. Blood was collected before and immediately after the test for the determination of plasma lactate dehydrogenase (LDH) and creatine kinase (CK) activities and lactate concentration (also measured 6, 10, and 15 min after the test). Plasma cytokines (IL-6, IL-1β, TNF-α, IL-8, IL-10, and IL-1ra) and C-reactive protein levels were also measured.ResultsA single dose of MGln increased the percentage of maximal oxygen consumption, second ventilatory threshold duration, and total distance covered during the exhaustion test and augmented plasma lactate levels 6 and 15 min after the test. MGln also decreased plasma LDH and CK activities indicating muscle damage protection. Plasma cytokine and C-reactive protein levels did not change across the study periods.ConclusionConditions including overnight fasting and a single dose of MGln supplementation resulted in exercising at a higher percentage of maximal oxygen consumption, a higher second ventilatory threshold, blood lactate levels, and reductions in plasma markers of muscle damage during an exhaustion test in elite triathletes. These findings support oral glutamine supplementation's efficacy in triathletes, but further studies require

    Lymphocyte activation after a high-intensity street dance class

    Get PDF
    Intense dance training leads to inflammation, which may impair the health and performance of the practitioners. Herein, we evaluate the effect of a single street dancing class on the profile of muscle enzymes, lymphocyte activation, and cell surface CD62L expression. We also investigated the correlation between muscle enzymes, adhesion molecules, and lymphocyte activation in dancers. Fifteen male participants (mean ± standard error: age 22.4 ± 1.08 years, body mass index 24.8 ± 0.69 kg/m2, body fat 12.3 ± 1.52%), who were amateur dancers, had blood samples collected previously and subsequent to a high-intensity street dance class. After the class, dancers showed an increase in total lymphocyte count (2.0-fold), creatine kinase (CK)-NAC (4.87%), and CK-MB (3.36%). We also observed a decrease (2.5-fold) in reactive oxygen species (ROS) produced by lymphocytes, under phorbol myristate acetate-stimulated environments. Following the dance class, CD62L expression in lymphocytes decreased (51.42%), while there was a negative correlation between the intensity of the exercise and CD62L expression (r = -0.73; p = 0.01). Lymphocytes were less responsive to stimuli after a single bout of street dancing, indicating transient immunosuppression

    Metabolic regulation and production of oxygen reactive species during muscule contraction: effect of glycogen on intracellular redox state

    Get PDF
    O exercício físico prolongado reduz os estoques de glicogênio muscular. Nessas condições, os processos de fadiga muscular são estimulados coincidindo com um aumento na produção de espécies reativas de oxigênio. A suplementação de carboidratos ou de antioxidantes isoladamente contribui para a melhora da performance muscular, sugerindo um efeito importante da depleção de substrato (glicose) e do aumento da produção de EROs no desenvolvimento da fadiga muscular durante a atividade física. Embora o mecanismo seja desconhecido, estamos propondo neste estudo que uma maior disponibilidade de glicogênio poderia favorecer uma maior atividade da via das pentoses fosfato, aumentando a disponibilidade de NADPH e GSH no tecido muscular esquelético. Uma maior capacidade antioxidante aumentaria a capacidade do tecido muscular em atividade, mantendo o equilíbrio redox durante atividade física prolongada e melhorando o desempenho. Neste processo, o ciclo glicose-ácido graxo pode ser importante aumentando a oxidação de lipídio e reduzindo o consumo de glicogênio durante a atividade prolongada. Além disso, um aumento na produção de EROs pode reduzir a atividade de enzimas importantes do metabolismo celular incluindo a aconitase e a a-cetoglutarato desidrogenase, comprometendo a produção de energia oxidativa, via predominante na produção de ATP durante a atividade muscular prolongada.Fatigue is closely related to the depletion of glycogen in the skeletal muscle during prolonged exercise. Under this condition, the production of oxygen reactive species (ROS) is substantially increased. It has been shown that dietary supplementation of carbohydrate or antioxidant attenuates muscle fatigue during contraction. This suggests that glycogen availability and/or elevated ROS production plays an important role on muscle fatigue development during prolonged muscle activity. Although the mechanism is still unknown, we propose that elevated muscle glycogen availability may lead to a high activity of hexose monophosphate pathway, increasing the NADPH and glutathione concentration in the skeletal muscle tissue. Elevated antioxidant capacity would increase the muscle redox balance during muscle contraction, improving performance. In this process, the glucose-fatty acid cycle may be important to increase lipid oxidation and consequently decrease glycogen utilization during prolonged activity. In addition, an elevated ROS production could reduce the activity of key metabolic enzymes including aconitase and a-ketoglutarate dehydrogenase, decreasing the oxidative energy production in the skeletal muscle during prolonged activity.FAPESPCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)CNP

    The Effects of Palmitic Acid on Nitric Oxide Production by Rat Skeletal Muscle: Mechanism via Superoxide and iNOS Activation

    Get PDF
    Background: Increased plasma concentrations of free fatty acids (FFA) can lead to insulin resistance in skeletal muscle, impaired effects on mitochondrial function, including uncoupling of oxidative phosphorylation and decrease of endogenous antioxidant defenses. Nitric oxide (NO) is a highly diffusible gas that presents a half-life of 5-10 seconds and is involved in several physiological and pathological conditions. The effects of palmitic acid on nitric oxide (NO) production by rat skeletal muscle cells and the possible mechanism involved were investigated. Methods: Primary cultured rat skeletal muscle cells were treated with palmitic acid and NO production was assessed by nitrite measurement (Griess method) and 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Nuclear factor-kappa B (NF-kappa B) activation was evaluated by electrophoretic mobility shift assay and iNOS protein content by western blotting. Results: Palmitic acid treatment increased nitric oxide production. This effect was abolished by treatment with NOS inhibitors, L-nitro-arginine (LNA) and L-nitro-arginine methyl esther (L-NAME). NF-kappa B activation and iNOS content were increased due to palmitic acid treatment. The participation of superoxide on nitric oxide production was investigated by incubating the cells with DAF-2-DA in the presence or absence of palmitic acid, a superoxide generator system (X-XO), a mixture of NOS inhibitors and SOD-PEG (superoxide dismutase linked to polyethylene glycol). Palmitic acid and X-XO system increased NO production and this effect was abolished when cells were treated with NOS inhibitors and also with SOD-PEG. Conclusions: In summary, palmitic acid stimulates NO production in cultured skeletal muscle cells through production of superoxide, nuclear factor-kappa B activation and increase of iNOS protein content. Copyright (C) 2012 S. Karger AG, BaselFAPESPFAPESPCNPqCNPqCAPESCAPE

    Dance training improves cytokine secretion and viability of neutrophils in diabetic patients

    Get PDF
    Background. Evidence suggests that exercise improves neutrophil function. The decreased functional longevity of neutrophils and their increased clearance from infectious sites contribute to the increased susceptibility to infection and severity of infection observed in patients with diabetes. Objective. Herein, we investigated the effects of a dance program on neutrophil number, function, and death in type 2 diabetes mellitus (T2DM) patients and healthy volunteers. Methods. Ten patients with T2DM and twelve healthy individuals participated in a moderate-intensity dance training program for 4 months. The plasma levels of leptin, free fatty acids (FFAs), tumour necrosis factor-α (TNF-α), C-reactive protein (CRP), interleukin-1β (IL-1β), and interleukin-1 receptor antagonist (IL-1ra); neutrophil counts; extent of DNA fragmentation; cell membrane integrity; and production of TNF-α, interleukin-8 (IL-8), interleukin-6 (IL-6), and IL-1β in neutrophils were measured before and after training. Results. Training reduced plasma levels of TNF-α (1.9-fold in controls and 2.2-fold in patients with T2DM) and CRP (1.4-fold in controls and 3.4-fold in patients with T2DM). IL-1ra levels were higher in the control group (2.2-fold) after training. After training, neutrophil DNA fragmentation was decreased in patients with T2DM (90%), while the number of neutrophils increased (70% in controls and 1.1-fold in patients with T2DM). Conclusion. Dance training is a nonpharmacological strategy to reduce inflammation and improve neutrophil clearance in patients with T2DM
    corecore