28 research outputs found

    Role of fatty acids in the transition from anaerobic to aerobic metabolism in skeletal muscle during exercise

    No full text
    In moderate physical exercise, the transition from predominantly anaerobic towards predominantly aerobic metabolism is a key step to improve performance. Increase in the supply of oxygen and nutrients, such as free fatty acids (FFA) and glucose, which accompanies high blood flow, is required for this transition. The mechanisms involved in the vasodilation in skeletal muscle during physical activity are not completely known yet. In this article, we postulate a role of FFA and heat production in this process. The presence of uncoupling protein-2 and -3 (UCP-2 and -3) in skeletal muscle, whose activity is dependent on FFA, suggests that these metabolites can act as mitochondrial uncouplers in this tissue. Evidence indicates however that UCPs act as uncouplers only when coenzyme Q is predominantly in the reduced state (i.e. under nonphosphorylation conditions or state 4 respiration) as is observed in resting muscles and in the beginning of physical activity (predominantly anaerobic metabolism). The increase in the lipolytic activity in adipose tissue in the beginning of physical activity results in elevated plasma FFA levels. The FFA can then act on the UCPs, increasing the local heat production. We propose that this calorigenic effect of FFA is important to activate nitric oxide synthase, resulting in nitric oxide production and consequent vasodilation. Therefore, FFA would be important mediators for the changes that occur in muscle metabolism during prolonged physical activity, ensuring the appropriate supply of oxygen and nutrients by increasing blood flow at the beginning of exercise in the contracting skeletal muscles. Copyright (c) 2006 John Wiley & Sons, Ltd.24647548

    Metabolic fate of glutamine in lymphocytes, macrophages and neutrophils

    No full text
    Eric Newsholme's laboratory was the first to show glutamine utilization by lymphocytes and macrophages. Recently, we have found that neutrophils also utilize glutamine. This amino acid has been shown to play a role in lymphocyte proliferation, cytokine production by lymphocytes and macrophages and phagocytosis and superoxide production by macrophages and neutrophils. Knowledge of the metabolic fate of glutamine in these cells is important for the understanding of the role and function of this amino acid in the maintenance of the proliferative, phagocytic and secretory capacities of these cells. Glutamine and glucose are poorly oxidized by these cells and might produce important precursors for DNA, RNA, protein and lipid synthesis. The high rate of glutamine utilization and its importance in such cells have raised the question as to the source of this glutamine, which, according to current evidence, appears to be muscle

    Conseqüências do exercício para o metabolismo da glutamina e função imune

    No full text
    Para o atleta, o objetivo do treinamento é aperfeiçoar sua capacidade física para obtenção do melhor desempenho em competições. Isso o leva a procurar os mais novos e eficientes métodos de treinamento. Um aspecto importante do programa de treinamento é o período de recuperação entre as sessões de exercícios, imprescindível para que ocorram as adaptações fisiológicas, como as alterações morfológicas e a supercompensação das reservas energéticas. A liberação de glutamina pelos músculos esqueléticos é aumentada durante o exercício. Como conseqüência, o conteúdo muscular de glutamina diminui após um exercício extenuante. Este aminoácido, entretanto, é muito importante para a funcionalidade dos leucócitos (linfócitos, macrófagos e neutrófilos). Portanto, após um exercício intenso, a concentração plasmática de glutamina diminui, suprimindo a função imune e tornando o indivíduo mais suscetível a infecções respiratórias. Nesta revisão são discutidas as implicações do exercício sobre o metabolismo dos músculos esqueléticos e leucócitos

    Effect of parenteral l

    No full text
    corecore