149 research outputs found

    Association between market concentration of hospitals and patient health gain following hip replacement surgery.

    Get PDF
    OBJECTIVES: To assess the association between market concentration of hospitals (as a proxy for competition) and patient-reported health gains after elective primary hip replacement surgery. METHODS: Patient Reported Outcome Measures data linked to NHS Hospital Episode Statistics in England in 2011/12 were used to analyse the association between market concentration of hospitals measured by the Herfindahl-Hirschman Index (HHI) and health gains for 337 hospitals. RESULTS: The association between market concentration and patient gain in health status measured by the change in Oxford Hip Score (OHS) after primary hip replacement surgery was not statistically significant at the 5% level both for the average patient and for those with more than average severity of hip disease (OHS worse than average). For 12,583 (49.1%) patients with an OHS before hip replacement surgery better than the mean, a one standard deviation increase in the HHI, equivalent to a reduction of about one hospital in the local market, was associated with a 0.104 decrease in patients' self-reported improvement in OHS after surgery, but this was not statistically significant at the 5% level. CONCLUSIONS: Hospital market concentration (as a proxy for competition) appears to have no significant influence (at the 5% level) on the outcome of elective primary hip replacement. The generalizability of this finding needs to be investigated.The paper is co-funded by the Office of Health Economics, London, UK and the Nuffield Trust, London, U

    Molecular Mechanisms of HIF-1Îą Modulation Induced by Oxygen Tension and BMP2 in Glioblastoma Derived Cells

    Get PDF
    BACKGROUND: Glioblastoma multiforme (GBM) is one of most common and still poorly treated primary brain tumors. In search for new therapeutic approaches, Bone Morphogenetic Proteins (BMPs) induce astroglial commitment in GBM-derived cells in vitro. However, we recently suggested that hypoxia, which is characteristic of the brain niche where GBM reside, strongly counter-acts BMP effects. It seems apparent that a more complete understanding of the biology of GBM cells is needed, in particular considering the role played by hypoxia as a signaling pathways regulator. HIF-1alpha is controlled at the transcriptional and translational level by mTOR and, alike BMP, also mTOR pathway modulates glial differentiation in central nervous system (CNS) stem cells. METHODOLOGY/PRINCIPAL FINDINGS: Here, we investigate the role of mTOR signaling in the regulation of HIF-1alpha stability in primary GBM-derived cells maintained under hypoxia (2% oxygen). We found that GBM cells, when acutely exposed to high oxygen tension, undergo Akt/mTOR pathway activation and that BMP2 acts in an analogous way. Importantly, repression of Akt/mTOR signaling is maintained by HIF-1alpha through REDD1 upregulation. On the other hand, BMP2 counter-acts HIF-1alpha stability by modulating intracellular succinate and by controlling proline hydroxylase 2 (PHD2) protein through inhibition of FKBP38, a PHD2 protein regulator. CONCLUSIONS/SIGNIFICANCE: In this study we elucidate the molecular mechanisms by which two pro-differentiating stimuli, BMP2 and acute high oxygen exposure, control HIF-1alpha stability. We previously reported that both these stimuli, by inducing astroglial differentiation, affect GBM cells growth. We also found differences in high oxygen and BMP2 sensitivity between GBM cells and normal cells that should be further investigated to better define tumor cell biology

    Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy)

    Get PDF
    Abstract. Physicochemical properties of aerosol were investigated by analyzing the inorganic water soluble content in PM2.5 samples collected in the eastern part of the Po Valley (Italy). In this area the EU limits for many air pollutants are frequently exceeded as a consequence of local sources and regional-scale transport of secondary inorganic aerosol precursors. Nine PM2.5-bound major inorganic ions (F−, Cl−, NO3−, SO42−, Na+, NH4+, K+, Mg2+, Ca2+) were monitored over one year in three sites categorized as semi-rural background, urban background and industrial. The acidic properties of the PM2.5 were studied by applying the recently developed E-AIM thermodynamic model 4 (Extended Aerosol Thermodynamics Model). The experimental data were also examined in relation to the levels of gaseous precursors of secondary inorganic aerosol (SO2, NOx, NO, NO2) and on the basis of some environmental conditions having an effect on the secondary aerosols generation processes. A chemometric procedure using cluster analysis on experimental [NH4+]/[SO42−] molar ratio and NO3− concentration has been applied to determine the conditions needed for ammonium nitrate formation in different chemical environments. Finally, some considerations on the secondary inorganic aerosol formation and the most relevant weather conditions concerning the sulfate-nitrate-ammonium system were also discussed. The obtained results and discussion can help in understanding the secondary aerosol formation dynamics in the Po Valley, which is one of the most critical regions for air pollution in southern Europe

    Bisphenol A shapes children’s brain and behavior: towards an integrated neurotoxicity assessment including human data

    Get PDF
    The authors gratefully acknowledge editorial assistance provided by Richard Davies. VM is under contract within the Human Biomonitoring for Europe Project (European Union Commission H2020-EJP-HBM4EU). The authors acknowledge the funding received from the Biomedical Research Networking Center-CIBER de Epidemiología y Salud Pública (CIBERESP), and the Instituto de Salud Carlos III (ISCIII) (FIS-PI16/01820 and FIS-PI16/01812). The funders had no role in the study design, data.Concerns about the effects of bisphenol A (BPA) on human brain and behavior are not novel; however, Grohs and colleagues have contributed groundbreaking data on this topic in a recent issue of Environmental Health. For the first time, associations were reported between prenatal BPA exposure and differences in children’s brain microstructure, which appeared to mediate the association between this exposure and children’s behavioral symptoms. Findings in numerous previous mother-child cohorts have pointed in a similar worrying direction, linking higher BPA exposure during pregnancy to more behavioral problems throughout childhood as assessed by neuropsychological questionnaires. Notwithstanding, this body of work has not been adequately considered in risk assessment. From a toxicological perspective, results are now available from the CLARITY-BPA consortium, designed to reconcile academic and regulatory toxicology findings. In fact, the brain has consistently emerged as one of the most sensitive organs disrupted by BPA, even at doses below those considered safe by regulatory agencies such as the European Food Safety Authority (EFSA). In this Commentary, we contextualize the results of Grohs et al. within the setting of previous epidemiologic and CLARITY-BPA data and express our disquiet about the “all-or-nothing” criterion adopted to select human data in a recent EFSA report on the appraisal methodology for their upcoming BPA risk assessment. We discuss the most relevant human studies, identify emerging patterns, and highlight the need for adequate assessment and interpretation of the increasing epidemiologic literature in this field in order to support decision-making. With the aim of avoiding a myopic or biased selection of a few studies in traditional risk assessment procedures, we propose a future reevaluation of BPA focused on neurotoxicity and based on a systematic and comprehensive integration of available mechanistic, animal, and human data. Taken together, the experimental and epidemiologic evidence converge in the same direction: BPA is a probable developmental neurotoxicant at low doses. Accordingly, the precautionary principle should be followed, progressively implementing stringent preventive policies worldwide, including the banning of BPA in food contact materials and thermal receipts, with a focus on the utilization of safer substitutes.European Union (EU): H2020-EJP-HBM4EUBiomedical Research Networking Center-CIBER de Epidemiologia y Salud Publica (CIBERESP)Instituto de Salud Carlos III FIS-PI16/01820 FIS-PI16/0181

    Efficient derivation of NPCs, spinal motor neurons and midbrain dopaminergic neurons from hESCs at 3% oxygen

    Get PDF
    This protocol has been designed to generate neural precursor cells (NPCs) from human embryonic stem cells (hESCs) using a physiological oxygen (O(2)) level of 3% and chemically defined conditions. The first stage involves suspension culture of hESC colonies at 3% O(2), where they acquire a neuroepithelial identity over two weeks. This timescale is comparable to that at 20% O(2), but survival is enhanced. Sequential application of retinoic acid (RA) and purmorphamine (PM), from day 14 to 28, directs differentiation towards spinal motor neurons. Alternatively, addition of FGF-8 and PM generates midbrain dopaminergic neurons. OLIG2 induction in motor neuron precursors is 2-fold greater than at 20% O(2), whereas EN1 is 5-fold enhanced. 3% NPCs can be differentiated into all three neural lineages, and such cultures can be maintained long-term in the absence of neurotrophins. The ability to generate defined cell types at 3% O(2) should represent a significant advance for in vitro disease modelling and potentially cell-based therapies

    Succinate is an inflammatory signal that induces IL-1 beta through HIF-1 alpha

    Get PDF
    Macrophages activated by the Gram-negative bacterial product lipopolysaccharide switch their core metabolism from oxidative phosphorylation to glycolysis1. Here we show that inhibition of glycolysis with 2-deoxyglucose suppresses lipopolysaccharide-induced interleukin-1β but not tumour-necrosis factor-α in mouse macrophages. A comprehensive metabolic map of lipopolysaccharide-activated macrophages shows upregulation of glycolytic and downregulation of mitochondrial genes, which correlates directly with the expression profiles of altered metabolites. Lipopolysaccharide strongly increases the levels of the tricarboxylic-acid cycle intermediate succinate. Glutamine-dependent anerplerosis is the principal source of succinate, although the ‘GABA (γ-aminobutyric acid) shunt’ pathway also has a role. Lipopolysaccharide-induced succinate stabilizes hypoxia-inducible factor-1α, an effect that is inhibited by 2-deoxyglucose, with interleukin-1β as an important target. Lipopolysaccharide also increases succinylation of several proteins. We therefore identify succinate as a metabolite in innate immune signalling, which enhances interleukin-1β production during inflammation

    Physiological normoxia and absence of EGF is required for the long-term propagation of anterior neural precursors from human pluripotent cells

    Get PDF
    Widespread use of human pluripotent stem cells (hPSCs) to study neuronal physiology and function is hindered by the ongoing need for specialist expertise in converting hPSCs to neural precursor cells (NPCs). Here, we describe a new methodology to generate cryo-preservable hPSC-derived NPCs that retain an anterior identity and are propagatable long-term prior to terminal differentiation, thus abrogating regular de novo neuralization. Key to achieving passagable NPCs without loss of identity is the combination of both absence of EGF and propagation in physiological levels (3%) of O2. NPCs generated in this way display a stable long-term anterior forebrain identity and importantly retain developmental competence to patterning signals. Moreover, compared to NPCs maintained at ambient O2 (21%), they exhibit enhanced uniformity and speed of functional maturation, yielding both deep and upper layer cortical excitatory neurons. These neurons display multiple attributes including the capability to form functional synapses and undergo activity-dependent gene regulation. The platform described achieves long-term maintenance of anterior neural precursors that can give rise to forebrain neurones in abundance, enabling standardised functional studies of neural stem cell maintenance, lineage choice and neuronal functional maturation for neurodevelopmental research and disease-modelling
    • …
    corecore