287 research outputs found

    Rapid System to Detect Variants of SARS-CoV-2 in Nasopharyngeal Swabs

    Get PDF
    Currently, the reference method for identifying the presence of variants of SARS-CoV-2 is whole genome sequencing. Although it is less expensive than in the past, it is still time-consuming, and interpreting the results is difficult, requiring staff with specific skills who are not always available in diagnostic laboratories. The test presented in this study aimed to detect, using traditional real-time PCR, the presence of the main variants described for the spike protein of the SARS-CoV-2 genome. The primers and probes were designed to detect the main deletions that characterize the different variants. The amplification targets were deletions in the S gene: 25-27, 69-70, 241-243, and 157-158. In the ORF1a gene, the deletion 3675-3677 was chosen. Some of these mutations can be considered specific variants, while others can be identified by the simultaneous presence of one or more deletions. We avoided using point mutations in order to improve the speed of the test. Our test can help clinical and medical microbiologists quickly recognize the presence of variants in biological samples (particularly nasopharyngeal swabs). The test can also be used to identify variants of the virus that could potentially be more diffusive as well as not responsive to the vaccine

    A new qualitative RT-PCR assay detecting SARS-CoV-2

    Get PDF
    The world is facing an exceptional pandemic caused by SARS-CoV-2. To allow the diagnosis of COVID-19 infections, several assays based on the real-time PCR technique have been proposed. The requests for diagnosis are such that it was immediately clear that the choice of the most suitable method for each microbiology laboratory had to be based, on the one hand, on the availability of materials, and on the other hand, on the personnel and training priorities for this activity. Unfortunately, due to high demand, the shortage of commercial diagnostic kits has also become a major problem. To overcome these critical issues, we have developed a new qualitative RT-PCR probe. Our system detects three genes—RNA-dependent RNA polymerase (RdRp), envelope (E) and nucleocapsid (N)—and uses the β-actin gene as an endogenous internal control. The results from our assay are in complete agreement with the results obtained using a commercially available kit, except for two samples that did not pass the endogenous internal control. The coincidence rate was 0.96. The LoD of our assay was 140 cp/reaction for N and 14 cp/reaction for RdRp and E. Our kit was designed to be open, either for the nucleic acid extraction step or for the RT-PCR assay, and to be carried out on several instruments. Therefore, it is free from the industrial production logics of closed systems, and conversely, it is hypothetically available for distribution in large quantities to any microbiological laboratory. The kit is currently distributed worldwide (called MOLgen-COVID-19; Adaltis). A new version of the kit for detecting the S gene is also available

    Immunomodulatory agents as potential therapeutic or preventive strategies for COVID-19

    Get PDF
    Currently, the COVID-19 pandemic, caused by the novel SARS-CoV-2 coronavirus, represents the greatest global health threat. Most people infected by the virus present mild to moderate respiratory symptoms and recover with supportive treatments. However, certain susceptible hosts develop an acute respiratory distress syndrome (ARDS), associated with an inflammatory “cytokine storm”, leading to lung damage. Despite the current availability of different COVID-19 vaccines, the new emerging SARS-CoV-2 genetic variants represent a major concern worldwide, due to their increased transmissibility and rapid spread. Indeed, it seems that some mutations or combinations of mutations might confer selective advantages to the virus, such as the ability to evade the host immune responses elicited by COVID-19 vaccines. Several therapeutic approaches have been investigated but, to date, a unique and fully effective therapeutic protocol has not yet been achieved. In addition, steroid-based therapies, aimed to reduce inflammation in patients with severe COVID-19 disease, may increase the risk of opportunistic infections, increasing the hospitalization time and mortality rate of these patients. Hence, there is an unmet need to develop more effective therapeutic options. Here, we discuss the potential use of natural immunomodulators such as Thymosin α1 (Tα1), all-trans retinoic acid (ATRA), and lactoferrin (LF), as adjunctive or preventive treatment of severe COVID-19 disease. These agents are considered to be multifunctional molecules because of their ability to enhance antiviral host immunity and restore the immune balance, depending on the host immune status. Furthermore, they are able to exert a broad-spectrum antimicrobial activity by means of direct interactions with cellular or molecular targets of pathogens or indirectly by increasing the host immune response. Thus, due to the aforementioned properties, these agents might have a great potential in a clinical setting, not only to counteract SARS-CoV-2 infection, but also to prevent opportunistic infections in critically ill COVID-19 patients

    The combined use of VIGl@ct (R) (bioMerieux) and fluorescent amplified length fragment polymorphisms in the investigation of potential outbreaks

    Get PDF
    Even with good surveillance programmes, hospital-acquired infections (HAls) are not always recognized and this may lead to an outbreak. In order to reduce this risk, we propose a model for prompt detection of HAls, based on the use of a real-time epidemiological information system called VIGI@ct (R) (bioMerieux, Las Balmas, France) and on the rapid confirmation or exclusion of the genetic relationship among pathogens using fluorescent amplified length fragment polymorphism (f-AFLP) microbial fingerprinting. We present the results of one year's experience with the system, which identified a total, of 306 suspicious HAls. Of these, 281 (92%) were 'confirmed' by clinical evidence, 16 (5%) were considered to be simple colonization and the tatter nine (3%) were archived as 'not answered' because of the absence of the physician's cooperation. There were seven suspected outbreaks; of these, f-AFLP analysis confirmed the clonal relationship among the isolates in four cases: outbreak 1 (four isolates of Pseudomonas aeruginosa), outbreak 2 (three Escherichia coli isolates), outbreak 6 (two Candida parapsilosis isolates) and outbreak 7 (30 ESPL-producing Klebsiella pneumoniae subsp. pneumoniae). Based on our results, we conclude that the combination of VIGI@ct (R) and f-AFLP is useful in the rapid assessment of an outbreak due to Gram-positive or Gramnegative bacteria and yeasts. (C) 2007 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved

    Sign-changing tower of bubbles for a sinh-Poisson equation with asymmetric exponents

    Full text link
    Motivated by the statistical mechanics description of stationary 2D-turbulence, for a sinh-Poisson type equation with asymmetric nonlinearity, we construct a concentrating solution sequence in the form of a tower of singular Liouville bubbles, each of which has a different degeneracy exponent. The asymmetry parameter γ(0,1]\gamma\in(0,1] corresponds to the ratio between the intensity of the negatively rotating vortices and the intensity of the positively rotating vortices. Our solutions correspond to a superposition of highly concentrated vortex configurations of alternating orientation; they extend in a nontrivial way some known results for γ=1\gamma=1. Thus, by analyzing the case γ1\gamma\neq1 we emphasize specific properties of the physically relevant parameter γ\gamma in the vortex concentration phenomena

    Blow-up solutions for linear perturbations of the Yamabe equation

    Full text link
    For a smooth, compact Riemannian manifold (M,g) of dimension N \geg 3, we are interested in the critical equation Δgu+(N2/4(N1)Sg+ϵh)u=uN+2/N2inM,u>0inM,\Delta_g u+(N-2/4(N-1) S_g+\epsilon h)u=u^{N+2/N-2} in M, u>0 in M, where \Delta_g is the Laplace--Beltrami operator, S_g is the Scalar curvature of (M,g), hC0,α(M)h\in C^{0,\alpha}(M), and ϵ\epsilon is a small parameter

    Salmonella enterica serovar typhimurium exploits inflammation to modify swine intestinal microbiota

    Get PDF
    Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria) normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota

    Investigating the effects of COVID-19 quarantine in migraine. An observational cross-sectional study from the Italian National Headache Registry (RICe)

    Get PDF
    Background: Previous studies during SARS and Ebola pandemics have shown that quarantine is associated with several negative psychological effects, such as post-traumatic stress symptoms, confusion, and anger. These conditions may affect the course of many diseases, including migraine. Although it is possible that the quarantine measures for the current COVID-19 pandemic affect migraine burden, no information is currently available on this issue. Aim: In this study, we aimed to: (1) explore the possible changes in migraine frequency, severity, and days with acute medication intake during quarantine period; (2) evaluate possible differences in migraine outcomes in consideration of lifestyle changes, emotions, pandemic diffusion, and COVID-19 infection. Methods: We interviewed patients who were included in the observational Italian Headache Registry (Registro Italiano Cefalee, RICE), retrospectively collecting information on main headache features, lifestyle factors, emotions, individual infection status, and perception of COVID-19 for 2 months before (pre-quarantine) and after the beginning of the quarantine (quarantine). Inclusion criteria were: age > 18, diagnosis of migraine without aura, migraine with aura and chronic migraine, last in-person visit more than 3 months preceding the beginning of quarantine. Results: A total of 433 migraine subjects agreed to be interviewed. We found an overall reduction in headache frequency (9.42 ± 0.43 days with headache vs. 8.28 ± 0.41) and intensity (6.57 ± 0.19 vs. 6.59 ± 0.21) during the quarantine, compared to pre-quarantine. There was a correlation between improvement and number of days of stay-at-home. When results were stratified for geographic area, we found a tendency toward worsening of headache frequency in northern Italy. Disgust regarding viral infection corresponded to a minor improvement in migraine. Conclusions: Migraine patients showed a mild improvement of migraine features, probably attributable to resilient behavior toward pandemic distress. Disgust regarding the contagion whereas potentially favoring defensive behavior, could potentially worsen migraine. The spontaneous limitation of migraine burden during quarantine could favor patient follow-up via the use of telemedicine visits, reliable diaries, and frequent remote contacts

    Investigating the Effects of COVID-19 Quarantine in Migraine: An Observational Cross-Sectional Study From the Italian National Headache Registry (RICe)

    Get PDF
    Background: Previous studies during SARS and Ebola pandemics have shown that quarantine is associated with several negative psychological effects, such as post-traumatic stress symptoms, confusion, and anger. These conditions may affect the course of many diseases, including migraine. Although it is possible that the quarantine measures for the current COVID-19 pandemic affect migraine burden, no information is currently available on this issue. Aim: In this study, we aimed to: (1) explore the possible changes in migraine frequency, severity, and days with acute medication intake during quarantine period; (2) evaluate possible differences in migraine outcomes in consideration of lifestyle changes, emotions, pandemic diffusion, and COVID-19 infection. Methods: We interviewed patients who were included in the observational Italian Headache Registry (Registro Italiano Cefalee, RICE), retrospectively collecting information on main headache features, lifestyle factors, emotions, individual infection status, and perception of COVID-19 for 2 months before (pre-quarantine) and after the beginning of the quarantine (quarantine). Inclusion criteria were: age > 18, diagnosis of migraine without aura, migraine with aura and chronic migraine, last in-person visit more than 3 months preceding the beginning of quarantine. Results: A total of 433 migraine subjects agreed to be interviewed. We found an overall reduction in headache frequency (9.42 ± 0.43 days with headache vs. 8.28 ± 0.41) and intensity (6.57 ± 0.19 vs. 6.59 ± 0.21) during the quarantine, compared to pre-quarantine. There was a correlation between improvement and number of days of stay-at-home. When results were stratified for geographic area, we found a tendency toward worsening of headache frequency in northern Italy. Disgust regarding viral infection corresponded to a minor improvement in migraine. Conclusions: Migraine patients showed a mild improvement of migraine features, probably attributable to resilient behavior toward pandemic distress. Disgust regarding the contagion whereas potentially favoring defensive behavior, could potentially worsen migraine. The spontaneous limitation of migraine burden during quarantine could favor patient follow-up via the use of telemedicine visits, reliable diaries, and frequent remote contacts

    The Mediterranean Forecasting System - Part 1: Evolution and performance

    Get PDF
    The Mediterranean Forecasting System produces operational analyses and reanalyses and 10 d forecasts for many essential ocean variables (EOVs), from currents, temperature, salinity, and sea level to wind waves and pelagic biogeochemistry. The products are available at a horizontal resolution of 1/24 (approximately 4 km) and with 141 unevenly spaced vertical levels. The core of the Mediterranean Forecasting System is constituted by the physical (PHY), the biogeochemical (BIO), and the wave (WAV) components, consisting of both numerical models and data assimilation modules. The three components together constitute the so-called Mediterranean Monitoring and Forecasting Center (Med-MFC) of the Copernicus Marine Service. Daily 10 d forecasts and analyses are produced by the PHY, BIO, and WAV operational systems, while reanalyses are produced every ∼ 3 years for the past 30 years and are extended (yearly). The modelling systems, their coupling strategy, and their evolutions are illustrated in detail. For the first time, the quality of the products is documented in terms of skill metrics evaluated over a common 3-year period (2018-2020), giving the first complete assessment of uncertainties for all the Mediterranean environmental variable analyses. © 2023 Giovanni Coppini et al
    corecore